Advanced Materials

SHARE

Functional Materials for Energy


The concept of functional materials for energy occupies a very prominent position in ORNL’s research and more broadly the scientific research sponsored by DOE’s Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of functionality is seen in advanced membrane materials that save energy by enhancing the efficiency of existing energy-intensive processes or offer entirely new routes for, e.g., separation processes, carbon dioxide capture or environmental remediation. A third type of functionality is seen in energy-responsive materials, which exhibit a chemical, mechanical, structural or electronic response to some form of energy stimulus that can be utilized for, e.g., sensing, actuation or signaling.

ORNL has extensive research programs into functional materials for energy ranging from basic science through to applied programs. Major areas of activity include (i) porous membranes for separation and environmental cleanup; (ii) electrolyte materials for selective ionic transport in batteries; (iii) organic and polymeric materials for electronic and photovoltaic applications; (iv) superconducting materials; (v) ferroelectric materials; (vi) thermoelectric materials and (vii) new low-energy synthetic routes to technologically important materials. A particular area of strength is in the synthesis and processing of new functional forms of carbon: from the amazing variety of nanostructured carbon materials to “foam” carbon insulators to carbon fiber for lightweight structural materials. It also offers capabilities in these research areas to facilitate science of external users from academia or industry through its user facilities in high performance computing, neutron science and nanoscience.

For more information, please contact:

1-5 of 27 Results
12345  

Decoding the Resistivity of Solid Electrolytes for Batteries
— The atomic-scale origin of grain-boundary (GB) resistance in solid electrolytes has been revealed by electron microscopy and spectroscopy. Inorganic solid electrolytes have the potential for enabling intrinsically safe, energy-dense batteries.

New Composite Electrolyte for Advanced Solid State Batteries Shows that Two is Better than One
— A new composite electrolyte for batteries with high conduction has been made by combining two solid electrolytes with complementary properties. The composite optimizes the favorable properties of the individual components while minimizing their limitations and opens the door for the development of new solid-state batteries for energy-dense storage of electricity.

Using neutrons to probe and understand battery interfaces
— Neutron reflectometry at the Spallation Neutron Source has revealed the composition and growth characteristics of the spontaneous chemical reaction layer formed between a silicon battery anode and an organic electrolyte that ultimately limits the capacity of the battery. We determined that a 3.

Anomalous Photodeposition of Ag on Ferroelectric Surfaces with Below Bandgap Excitation
— Photochemical deposition of elemental Ag nanoparticles on a ferroelectric substrate with sub bandgap transmitted white light indicates light confinement and non-linear optical phenomena. This innovation opens the pathway to unprecedented fine control and optimization of the growth of functional nanostructures for potential applications ranging from chemical sensing to high speed data transfer.

Evidence for non-uniform superconductivity in iron-based materials
— Multi-scale bulk and local electronic and structural studies on an iron-based superconductor have revealed, for the first time, an origin of non-bulk superconductivity. Understanding the role of chemical doping in causing superconductivity can potentially lead to the design of advanced high-temperature superconductors (HTS).

 
12345  
ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.