More Science

SHARE

Materials Theory and Simulation


ORNL conducts a broad range of theoretical research in the physical sciences with over 60 staff members and additional students, post-doctoral associates and visitors. This work is tightly integrated with experimental programs and is committed to making effective use of modern theory and advanced computation to progress core science and technology. Efforts include a full range of theory activities, ranging from basic science aimed at providing the fundamental basis for long-term solutions to our energy problems, to near-term work addressing our nation's most pressing energy and security needs. Work is highlighted by:

  • Cross-cutting capabilities/efforts impacting multiple ORNL programs and activities centered on nanoscience, physics, chemistry, materials, and neutron science
  • New theory and computational approaches to establish and enhance links with experiments
  • First principles methods based on density functional theory, quantum chemistry, classical and ab initio molecular dynamics, transport theory, many-body theory, quantum Monte Carlo, field theoretic approaches, phase field analysis, and statistical mechanics
  • Guiding understanding and providing prediction of new materials, architectures and reactions before they are realized in the experimental labs
  • Illuminating connections between experimental observations across diverse characterization techniques
  • Identifying new synthetic pathways

For more information, please contact:

1-5 of 239 Results
12345  

Strain Doping: A New Approach to Understanding and Controlling Advanced Materials
— Helium ions were used to control the length of a single axis in a crystal lattice, allowing for delicate manipulations of complex behavior. This accomplishment unlocks the door to engineering next-generation complex materials.

Electron Beam Guides Engineering of Functional Defects
— The electron beam of a scanning transmission electron microscope was applied to generate Se vacancies in a semiconducting monolayer of MoSe2, provide energy to drive the formation and growth of inversion domains and metallic 60˚ grain boundaries, and track the dynamics.

Oxygen Controls Surface of Epitaxial Manganite Films
— This atomically resolved study revealed a strong link between oxygen pressure and both surface-structure formation and growth dynamics in manganite thin films. The work provides key insights into controlling atomic-level behavior necessary for growing functional materials, such as manganese oxides for electronic and solid-oxide fuel cell applications.

Confining Liquids in Hollow Nanospheres Can Yield Superior Quasi-Solid Electrolytes
— The growth and proliferation of lithium dendrites during cell recharge seriously hinder development and application of rechargeable Li-metal batteries. Researchers developed a promising strategy for fabrication of quasi−solid electrolytes with superior lithium ionic conductivities, by using a hollow silica (HS) nanosphere-film architecture that blocks dendrites.

Materials scientists use ORNL’s CADES to transform big data to ‘smart data’ for rapid image analysis
— Materials scientists use ORNL’s CADES to transform big data to ‘smart data’ for rapid image analysis. ORNL material sciences researchers are collaborating with computer scientists in ORNL’s Compute and Data Environment for Science (CADES) to create a processing and analysis workflow for the expansive scanning probe and electron microscopy data generated at the Center for Nanophase Materials Sciences (CNMS).

 
12345  
ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.