Advanced Materials

SHARE

Materials Theory and Simulation


ORNL conducts a broad range of theoretical research in the physical sciences with over 60 staff members and additional students, post-doctoral associates and visitors. This work is tightly integrated with experimental programs and is committed to making effective use of modern theory and advanced computation to progress core science and technology. Efforts include a full range of theory activities, ranging from basic science aimed at providing the fundamental basis for long-term solutions to our energy problems, to near-term work addressing our nation's most pressing energy and security needs. Work is highlighted by:

  • Cross-cutting capabilities/efforts impacting multiple ORNL programs and activities centered on nanoscience, physics, chemistry, materials, and neutron science
  • New theory and computational approaches to establish and enhance links with experiments
  • First principles methods based on density functional theory, quantum chemistry, classical and ab initio molecular dynamics, transport theory, many-body theory, quantum Monte Carlo, field theoretic approaches, phase field analysis, and statistical mechanics
  • Guiding understanding and providing prediction of new materials, architectures and reactions before they are realized in the experimental labs
  • Illuminating connections between experimental observations across diverse characterization techniques
  • Identifying new synthetic pathways

For more information, please contact:

1-5 of 8 Results
12  

Easy phase transitions spur high piezoelectric responses
— Theoretical calculations, based on newly obtained experimental geometries in strained BiFeO3 thin films, predict an almost barrierless transition between co-existing phases. This facile transition provides insight into the origin of the high electromechanical responses found in coexisting phases in this Pb-free material.

New model predicts formation of stable high-entropy alloys
— Researchers devised a model that can predict which combinations of 5 or more elements will form new “high-entropy alloys.” This work, which utilizes values obtained from data mining of high-throughput calculations of binary compounds, requires no experimental or empirically derived input and advances capabilities for “materials by design.

Scientists Connect Thermoelectric Materials and Topological Insulators
— Quantum mechanical calculations of electronic structure and transport for Bi2Te3 and its sister material Bi2Te2Se solved the long-standing puzzle of why many materials that are topological insulators are also excellent thermoelectrics.

Facets and disorder hold key to battery materials performance
— A synergistic combination of atomic-scale experiment and theory identify Ni antisites as the predominant defects in a lithium–manganese-rich cathode material. In addition, their formation energies are facet-dependent, with larger defect concentrations observed at open (010) facets.

Strain-induced vacancy stability shown across an interface
— Density functional theory (DFT) calculations show that among the four types of (001) SrTiO3 | (001) MgO interface structures, the TiO2-terminated SrTiO3 containing electrostatically attractive MgO and TiO ionion interactions form the most stable interface.

 
12  
ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.