More Science

SHARE

Theory, Modeling and Simulation


ORNL conducts a broad range of theoretical research in the physical sciences with over 60 staff members and additional students, post-doctoral associates and visitors. This work is tightly integrated with experimental programs and is committed to making effective use of modern theory and advanced computation to progress core science and technology. Efforts include a full range of theory activities, ranging from basic science aimed at providing the fundamental basis for long-term solutions to our energy problems, to near-term work addressing our nation's most pressing energy and security needs. Work is highlighted by:

  • Cross-cutting capabilities/efforts impacting multiple ORNL programs and activities centered on nanoscience, physics, chemistry, materials, and neutron science
  • New theory and computational approaches to establish and enhance links with experiments
  • First principles methods based on density functional theory, quantum chemistry, classical and ab initio molecular dynamics, transport theory, many-body theory, quantum Monte Carlo, field theoretic approaches, phase field analysis, and statistical mechanics
  • Guiding understanding and providing prediction of new materials, architectures and reactions before they are realized in the experimental labs
  • Illuminating connections between experimental observations across diverse characterization techniques
  • Identifying new synthetic pathways

For more information, please contact:

1-5 of 206 Results
12345  

Importance of diminished local structural distortions and magnetism in causing iron-based superconductivity
— By analyzing the role of structural variation and magnetism of Cu dopants in FeAs planes, researchers demonstrated that orthorhombic distortions that give strong spin-density-wave spin (SDW) fluctuations are detrimental to superconductivity in BaFe2As2. The results provide new information about the interplay between local composition, magnetism and superconductivity.

Metallic Glasses: Different Deformation Properties Underpinned by the Same Trigger
— A novel simulation approach demonstrates that a universal deformation trigger exists in metallic glasses and that the spatial organization of these triggers is closely related to the dynamics and stabilities of the system. This work demonstrates that a universal trigger initiates deformation and the organization of such triggers significantly affects bulk behavior.

Laser speckle analysis resolves mesoscale transitions
— An elegant experimental approach, which requires only simple and widely available equipment, provides previously inaccessible spatial and temporal resolution on coexisting electronic domains in a technologically promising transition-metal oxide.

Creating and Activating a Terahertz Nanorotor in Graphene
— Replacing a hexagonal ring of carbon atoms in a graphene layer with a silicon trimer results in a terahertz rotor (1012 rotations/sec) with low friction. This demonstrates that the ultimate miniaturization of a mechanical device (switch, oscillator, stirrer) down to a triangular arrangement of three atoms is possible.

Double-Magic Nature of 132Sn and 208Pb

Reference: Phys. Rev. Lett.

 
12345  
ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.