Skip to main content
SHARE
Publication

Photofield electron emission from an optical fiber nanotip...

by Sam Keramati, Ali Passian, Vineet Khullar, Herman Batelaan
Publication Type
Journal
Journal Name
Applied Physics Letters
Publication Date
Volume
117
Issue
6

We demonstrate a nanotip electron source based on a graded index multimode silica optical fiber, tapered at one end to a radius of curvature r ∼50 nm and coated with a thin film of gold. We report observation of laser-induced electron photoemission at tip bias potentials below the onset of dark field emission. Single-photon photofield emission is identified as the emission mechanism that exhibits fast switching times with an upper limit on the order of 1 μs. The explored fiber optic nanotips are flexible back-illuminated emitters, which can be operated in continuous wave and pulsed modes using lasers with photon energies in the visible range or higher. The mechanical flexibility of the source can facilitate externally controlled positioning. Multiple, individually addressable, nanotips may be assembled into a bundle for applications such as computational electron ghost imaging.