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ABSTRACT

In this paper, we investigate several improvements to region-based level set algorithms in the context of seg-
menting x-ray CT data from pre-clinical imaging of small animal models. We incorporate a recently introduced
signed distance preserving term into a region-based level set model and provide formulas for a semi-implicit
finite difference implementation. We illustrate some pitfalls of topology preserving level sets and introduce the
concept of connectivity preservation as a potential alternative. We illustrate the benefits of these improvements
on phantom and real data.
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1. INTRODUCTION

The study of small animal models has increasingly become an important vehicle for elucidating human disease
mechanisms. Mice in particular have received notable attention, primarily because of substantial similarities
between the mouse and human genome as well as the relative ease with which mice can be genetically manip-
ulated.1 Our efforts in this paper are motivated by the study of a transgenic mouse model of AA-amyloidosis
using 3D anatomic and functional imaging.2 Our goal is to develop improved methods for semi-automatic
segmentation of the spleen using contrast-enhanced microCT data. The mouse spleen, however, is challenging
to segment. An example slice from a volumetric data set is shown in Fig. 1. Even with the aid of blood-pool
contrast-enhancement, the boundaries are weak and the interior is inhomogeneous due to the presence of follicles
which contain no blood.

(a) (b)

Figure 1. Example of raw data and corresponding likelihood image. (a) Grayscale image of raw CT data containing a
portion of the spleen. The small circle in the spleen region surrounds a manually marked seed point used to initialize
the semi-automatic segmentation process. (b) Likelihood image corresponding to raw data from (a). A two-component
Gaussian mixture is estimated from the seed region. The resulting higher mean component represents the spleen blood
pool and is used to compute the likelihood image (see Section 3.1).
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Building upon our earlier work,3, 4 we explore several low-level improvements to level set algorithms in the
context of segmenting 3D small animal CT imagery. The specific contributions of this paper are as follows.

• We introduce the signed distance preserving term of Li et al.5 into the Chan-Vese region-based level set
formulation and provide a 3D, semi-implicit finite difference implementation.

• We demonstrate the improved performance of the semi-implicit scheme relative to an explicit scheme.

• We demonstrate the improvement provided by the signed distance term and quantify the additional com-
putational burden, which is minimal relative to periodic reinitialization.

• We illustrate some pitfalls of topology preserving level sets and introduce connectivity preservation as a
potential remedy.

For notational convenience, we will sometimes refer to the signed distance preserving term as the γ-term (see
Section 2).

The remainder of this paper is organized as follows. In Section 2, we give the region-based level set formulation,
based on the Chan-Vese6 model and include the signed distance preserving term of Li et al.. We also present in
this section a semi-implicit finite difference implementation and discuss our convergence criteria. In Section 3,
we describe how we use the model for segmenting the mouse spleen and present the concept of connectivity
preservation. We then present some experimental results in Section 4 and close in Section 5.

2. LEVEL SET FORMULATION AND NUMERICAL IMPLEMENTATION

We seek a contour C such that the region of interest is contained inside C. In the level set formulation,7 this
contour C is defined implicitly as the zero level set of a function f : Ω → R where Ω ⊂ R3 for volumetric data.
The aim then is to find an optimal level set function f according to some pre-defined criteria. The contour is
formally defined as C = {(x, y, z) : f(x, y, z) = 0}. We define the region inside the surface by f(x, y, z) > 0 and
call it R1; the region outside, R2, is where f(x, y, z) ≤ 0. For notational convenience henceforth, we will use
s ≡ (x, y, z) for the spatial coordinates when needed. However, we will often leave implicit the dependence on
the spatial coordinates, i.e., we will use f ≡ f(x, y, z) ≡ f(s).

2.1. Formulation

Because of the poor contrast and unclear edges in our data (see Fig. 1), we adopt the region-based level set
approach first suggested by Chan and Vese.6 In that model, as in almost all level set models, it is assumed that
the level set function f is a signed distance function, i.e., that |∇f | = 1. However, this important constraint is
not enforced by the evolution itself, but rather by periodic reinitialization which is often performed by solving
the following evolution equation∗

∂f

∂t
= sign(f)(1− |∇f |) (1)

with an appropriate upwind finite difference scheme.9 Unfortunately, when such reinitialization should be
performed and with what parameters (time step and number of iterations) are not well defined quantities.
A recently proposed technique by Li et al.,5 however, potentially removes this need for reinitialization; the
constraint that |∇f | = 1 is incorporated directly into the energy functional. With this modification to the
Chan-Vese formulation, the energy functional J(f) we seek to minimize can be expressed

J(f) = λ1

∫
(u− µ1)2Hε(f)ds + λ2

∫
(u− µ2)2

(
1−Hε(f)

)
ds + ν

∫
δε(f)|∇f |ds + γ

∫
1
2
(|∇f | − 1)2ds, (2)

where u ≡ u(s) is the data being segmented, Hε(·) is a regularized Heaviside step function, δε(·) is a regularized
Dirac function, and µ1 and µ2 represent the averages of u in R1 (inside the contour) and R2 (outside the

∗We note that fast distance transforms8 are an alternative to iterative reinitialization via Eq. (1).



contour), respectively. Intuitively, the first two terms of J(f) – weighted by λ1 and λ2 – represent the image-
based component and minimizing them implies that u is approximately homogeneous both in R1 and in R2.
The third term, weighted by ν, represents the smoothness of the contour and the fourth term, weighted by γ,
represents the signed distance preserving term of Li et al., which, for convenience, we refer to as the γ-term.

The energy functional is minimized using an Euler-Lagrange approach with artificial time t, resulting in the
following PDE:

∂f

∂t
= δε(f)

(
λ2(u− µ2)2 − λ1(u− µ1)2

)
+ δε(f)

(
ν div

( ∇f

|∇f |

))
+ γ
(
∇2f − div

( ∇f

|∇f |

))
= δε(f)

(
λ2(u− µ2)2 − λ1(u− µ1)2

)
+
(
νδε(f)− γ

)
div
( ∇f

|∇f |

)
+ γ(∇2f),

(3)

where ∇2 represents the Laplacian operator and where ∂f/∂t = 0 for the optimal f .

2.2. Numerical Implementation
We use Dx

+, Dx
−, and Dx

c to represent first-order forward, backward, and central difference operators, respectively,
in the x direction; similar definitions apply for the y and z directions. We let fi,j,k represent the discretization
of f(x, y, z), but, for notational convenience, we drop the subscripts when they are centered, i.e., f ≡ fi,j,k but
fi+1 ≡ fi+1,j,k. Hence, Dx

+f = fi+1 − f , Dx
−f = f − fi−1, and Dx

c f = fi+1 − fi−1. We let d represent the
dimensionality of the data, e.g., d = 2 for image data and d = 3 for volumetric data. We use the following
non-compact regularizations for the Heaviside and Dirac functions:

Hε(a) =
1
2

+
1
π

tan−1
(a

ε

)
and δε(a) =

ε2

ε2 + a2

with ε = 1. We note that δε(a) is normalized so that δε(0) = 1.

To discretize Eq. (3), we adopt a semi-implicit finite difference scheme like that of Vese and Chan10 and
described as follows. We first consider the divergence term, where

div
( ∇f

|∇f |

)
=

∂

∂x

(∂f/∂x

|∇f |

)
+

∂

∂y

(∂f/∂y

|∇f |

)
+

∂

∂z

(∂f/∂z

|∇f |

)
. (4)

For the x component of Eq. (4), we use the following discrete approximation

∂

∂x

(∂f/∂x

|∇f |

)
→ ∆̂xf = Dx

− ◦

(
Dx

+f√
(Dx

+f)2 + (Dy
c f)2 + (Dz

cf)2

)

=
Dx

+f√
(Dx

+f)2 + (Dy
c f)2 + (Dz

cf)2
−

Dx
+fi−1√

(Dx
+fi−1)2 + (Dy

c fi−1)2 + (Dz
cfi−1)2

= C1(fi+1 − f)− C2(f − fi−1),

(5)

where
C1 =

1√
(Dx

+f)2 + (Dy
c f)2 + (Dz

cf)2
(6)

and
C2 =

1√
(Dx

+fi−1)2 + (Dy
c fi−1)2 + (Dz

cfi−1)2
. (7)

Using the same approach for the y and z components of Eq. (4), we get

div
( ∇f

|∇f |

)
→ ∆̂f = C1fi+1 + C2fi−1 + C3fj+1 + C4fj−1 + C5fk+1 + C6fk−1 +

2d∑
l=1

Clf

= D − Cf

(8)



for the complete approximation of Eq. (4), where we use D to represent the first six terms and C to represent
the summation of the Cl terms.

We now consider the Laplacian term from Eq. (3), where

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. (9)

We approximate the x component of the Laplacian using

∂2f

∂x2
→ Dx

−Dx
+f = fi+1 − 2f + fi−1. (10)

Using the same scheme for the y and z components yields

∇2f → ∇̂2f = fi+1 + fi−1 + fj+1 + fj−1 + fk+1 + fk−1 − (2d)f
= L − (2d)f

(11)

for the complete approximation of Eq. (9), where we use L to represent the first six terms.

Using the spatial discretizations from Eq. (8) and Eq. (11), we discretize the time derivative from Eq. (3)
using

∂f

∂t
→ fn+1 − fn

τ
= δε(fn)

(
λ2(u− µn

2 )2 − λ1(u− µn
1 )2
)

+
(
νδε(fn)− γ

)
∆̂fn + γ∇̂2fn, (12)

where the superscript indicates the discrete time step. We define

In = λ2(u− µn
2 )2 − λ1(u− µn

1 )2, (13)

where µn
1 and µn

2 are given by

µn
1 =

∑
i,j,k fnH(fn)∑

i,j,k H(fn)
(14)

and

µn
2 =

∑
i,j,k fn

(
1−H(fn)

)∑
i,j,k

(
1−H(fn)

) . (15)

We use the results of Eq. (8) and Eq. (11) and, for the semi-implicit scheme, we substitute fn+1 on the right
hand side of Eq. (12) for fn wherever it appears linearly without spatial shifting. This yields

fn+1 − fn

τ
= δε(fn)In +

(
νδε(fn)− γ

)
(Dn − Cfn+1) + γ

(
Ln − (2d)fn+1

)
. (16)

Rearranging Eq. (16) finally leads us to our level set update equation:

fn+1 =
fn + τδε(f)In + τ

(
νδε(f)− γ

)
Dn + τγLn

1 + τ2dγ + τCn
(
νδε(f)− γ

) . (17)

2.3. Computational Cost of the Signed Distance Term

We can quantify the additional computation introduced by the γ-term as follows. We first note the (νδε(f)− γ)
term in both the numerator and denominator; this incurs one ADD operation per grid point per iteration.
Expanding the Dn and Ln terms in the numerator, we find that τ

(
νδε(f)− γ

)
Dn + τγLn can be written as the

summation of six terms of the form τfi+1

(
γ + C1(νδε(f)− γ)

)
. Hence, letting d = 2 or d = 3 represent the data

dimensionality, the net result is that in the semi-implicit scheme of Eq. (17), the γ-term incurs a computational
burden of only 2d + 1 ADD operations per grid point per iteration. In contrast, the upwind implementation of
the reinitialization evolution from Eq. (1) requires d + 2 ADDs, 4d + 2 MULTs, and 2 SQRTs per grid point per
iteration (of reinitialization); this ignores the burden of several max, min, sign, and conditionals.



2.4. Convergence

We adopt a simple mechanism to define convergence that is heuristic yet effective. We note that the shape of
the object or objects being segmented changes (on a full pixel scale) from step n to n+1 only if some grid points
of the level set function f change sign. We note, however, that there are often small scale oscillations in n that
can cause a single point to change signs repeatedly. Hence, we count the number of new grid points (i.e., those
that have not previously changed sign) that change sign on each iteration. If this number is zero (or below a
threshold) for several successive time steps, we terminate the iteration. In our 2D results in Section 4, we define
convergence to be 5 iterations where zero new points change sign.

3. APPLICATION TO THE MOUSE SPLEEN

In this section, we discuss some specifics of segmenting the contrast-enhanced, inhomogeneous mouse spleen
using the region-based level set model described above.

3.1. Blood Pool Likelihood Image

Despite the use of a contrast agent, the spleen contrast is not sufficient to perform segmentation on the raw
data. The spleen interior comprises two primary components, blood and follicles. X-ray contrast is produced
using a venous contrast agent; hence the blood region appears relatively brighter than the follicles and other
surrounding soft tissue, perhaps with the exception of some connected veins that also contain contrast agent
and/or near-bone regions. In our semi-automatic approach, an interior point near the spleen middle is marked
by the biologist or technician reviewing the reconstructed CT imagery. As shown in Fig. 1, we initialize the
contour to a small circle (or sphere) around this seed point such that the circle contains both blood pool and
follicle regions. We then estimate a two-component Gaussian mixture on the pixels (or voxels) in this region;
the component with the higher mean is the blood pool. Letting the blood pool mean and standard deviation be
represented by µb and σb, respectively, we compute a likelihood image as

ui,j,k = exp
(−(ri,j,k − µb)2

2σ2
b

)
(18)

where ri,j,k represents the raw image data. An example likelihood image computed in this fashion is shown in
Fig. 1(b) and demonstrates the improved contrast of the spleen blood pool provided by this approach. We apply
the segmentation algorithm(s) to these likelihood images rather than the raw data.

3.2. Connectivity Preserving Level Sets

The outer spleen surface in 3D is topologically equivalent to the sphere. Due to its arrangement in the mouse
body relative to the CT scan direction, each transaxial slice of the spleen is also topologically equivalent to a
circle. This leads us to consider the application of topology preserving level sets.11

As noted by Han et al., topology in the level set segmentation cannot change unless a non-simple grid point
of the level set function f changes sign from one iteration to the next. Consider the level set function at some
grid point (i, j, k) that, according to the update equation, would change sign. Let Fn represent the number of
connected foreground components and Bn the number of connected background components in the 3 × 3 × 3
neighborhood around the point (i, j, k), where the foreground and background connectivities are appropriately
dual. In topology preserving level sets, we allow (i, j, k) to change sign only if it is a simple point, meaning that
both Fn+1 = Fn and Bn+1 = Bn if the point were to change sign. If (i, j, k) is not simple, we do not allow
fi,j,k to change sign and instead set fn+1

i,j,k = ε sign(fn
i,j,k), where ε is some small positive number. This topology

check must be performed at every iteration for every grid point that would change sign according to the update
equation. It can be performed quite efficiently via the computation of some topological numbers, but as we note
below, the sheer number of such checks can be computationally demanding. Furthermore, the results of topology
preservation, however, are not always desirable (see Figs. 4 and 5 later).

Even though the outer surface of the spleen is topologically equivalent to the sphere, we are using the
enhanced blood pool to differentiate the spleen. This implies a region with interior holes because of the follicles.
Hence, topology preservation is not necessarily appropriate. Instead, we expect our segmentation result (at least



initially) to be a single connected region, perhaps with holes. This leads us to propose connectivity preservation.
Like topology, connectivity cannot change unless a grid point of f changes sign. Assuming, by convention, that
the region of interest is the foreground region where fi,j,k > 0, foreground connectivity will be preserved when
fi,j,k changes sign only if Fn+1 ≤ Fn. We hence count the number of connected foreground components with
and without the potential sign change. If the number of components stays the same or decreases, we allow the
update, otherwise, we set fn+1

i,j,k = ε sign(fn
i,j,k) as with topology preservation. Some illustrative examples of

connectivity preservation are shown in Figs. 4 and 5 in Section 4.3.

4. EXPERIMENTAL RESULTS

Here we present experimental results illustrating the performance of the various algorithmic improvements de-
scribed above, including the semi-implicit scheme, the signed distance term, and connectivity preservation. We
conclude with some example results applied to mouse spleen data.

(a) (b)

(c) (d)

Figure 2. Comparison of explicit vs. semi-implicit finite difference schemes. (a) Level set function is initialized to signed
distance function around the indicated contour. (b) Converged level set function after 368 iterations using explicit scheme.
(c) Converged level set function after 367 iterations using semi-implicit scheme. (d) Zoom on resulting final contours,
where the dashed line indicates the semi-implicit result. Note that the explicit result in (b) exhibits oscillations around the
initialization which can also be observed in the corresponding contour in (d). Parameters were τ = 0.05, ν = 0.01× 2552,
λ1 = λ2 = 1, and γ = 0. We henceforth employ the semi-implicit scheme for all following results.

4.1. Semi-implicit vs. Explicit Scheme

We first consider the semi-implicit finite difference scheme of Eq. (17) relative to a more simple explicit scheme.
Example results, with parameters noted in the caption, are illustrated in Fig. 2 on a phantom image. We note
that the converged level set function of the explicit scheme in (b) exhibits strong oscillations about the initial
contour. The converged level set function from the semi-implicit scheme is shown in (c) and exhibits negligible
lingering oscillations from the initialization. As evident in (d), these oscillations have a detrimental effect on the
smoothness of the resulting contour.

4.2. Signed Distance Term

We illustrate the improvements from the γ-term in Fig. 3. In (b), we show contours of the converged level set
function at {−80,−40, 0, 40, 80} without using the γ-term. These contours have collapsed onto one another,



(a) (b)

(c) (d) (e)

Figure 3. Effect of using the signed distance preservation term. (a) Image and initialization. (b) Contours around
the triangle at levels {−80,−40, 0, 40, 80} of converged (179 iterations) level set function with γ = 0. (c) Contours of
converged (136 iterations) level set function using γ = 1. (d) Zoom on top point of star showing the zero contour for γ = 0
as the solid line and for γ = 1 as the dashed line; note that the dashed line is smoother. (e) Contours after convergence
using 5 iterations of reinitialization after every 10 level set iterations. For (e), the level set function converged after 124
iterations, implying 12× 5 = 60 iterations of reinitialization. Oscillations are evident in (e) since reinitialization was not
applied after final convergence. Parameters were τ = 0.05, ν = 0.01× 2552, and λ1 = λ2 = 1.

resulting in a discontinuous, ill-behaved function near the zero level set. Conversely, in (c), we show the same
contours using the γ-term. Though true signed distance is not preserved, the level set function is much smoother
near the zero contour. Additionally, the resulting contour (dashed line) is smoother as evident in (d). Finally,
in (e), we show the resulting contours without using the γ-term but with periodic reinitialization to achieve a
result similar to (c).

4.3. Connectivity Preservation

In Fig. 4, we illustrate a potential drawback of topology preserving level sets.11 As seen in (a), the image
comprises a large circle with a small hole near a smaller circle. The contour is initialized inside the large circle.
In (b), the resulting segmentation is shown using the traditional algorithm with no topology or connectivity
constraints; the result is as expected. In (c) and (d), however, we show the result using topology preservation.
Note that significantly more iterations are required to achieve the result in (c) and (d). In (e), we show the result
using connectivity preservation, which is achieved in the fewest iterations compared to either the unconstrained
or topology preserving method. We do note, however, that the “ideal” result – a single circular contour, without
a hole, around the large circle – was achieved by increasing the smoothness parameter from 0.01 × 2552 to
ν = 2.0× 2552, but required 1351 iterations.

We illustrate further connectivity preservation as compared to topology preservation in Fig. 5 using a spleen
likelihood image. In (b), we see the topology preserving result contains many crevices. The connectivity pre-
serving result is shown in (c); it is achieved much more quickly since fewer topology checks were required. We
also note the performance improvement provided by the γ-term. Using γ = 0, the result in (c) required 133
iterations (as opposed to 83) and 54,147 topology checks (as opposed to 22,792).



(a) (b)

(c) (d) (e)

Figure 4. Topology preservation on a phantom comprising a large circle with a hole (top left) near a small circle (top
right). (a) Image and initialization. (b) Converged segmentation after 124 iterations without topology or connectivity
constraints. (c) Converged segmentation after 179 iterations using topology preservation. (d) Zoom on the hole region
from (c). (e) Converged segmentation after 136 iterations using connectivity preservation. Parameters were τ = 0.05,
ν = 0.01× 2552, and λ1 = λ2 = 1, and γ = 0.

(a) (b) (c)

Figure 5. Topology preservation vs. connectivity preservation on spleen likelihood image. (a) Likelihood image and
initialization. (b) Topology preserving result in inverse grayscale. Converged after 84 iterations and required 39,953
topology checks. (c) Connectivity preserving result. Converged after 83 iterations and required only 22,792 topology
checks. Parameters were τ = 0.05, ν = 0.01 × 2552, λ1 = λ2 = 1, and γ = 1. When we used γ = 0, we note that 133
iterations and 54,147 topology checks were required to achieve the result in (c).

4.4. 3D Results on the Spleen

Here we show some results of fully 3D segmentation, using the likelihood image approach described in Section 3.1,
with a data volume of size 174 × 100 × 167. First, in Fig. 6 we show the result without using either the signed
distance (γ) term or connectivity preservation. Many disconnected regions in the volume match the blood pool
statistics and are hence captured by the segmentation since connectivity is not considered (a similar result
is obtained even with γ = 1). In Fig. 7, we show the much improved result using γ = 1 and connectivity
preservation.



Figure 6. Fully 3D segmentation without the signed distance term (i.e., γ = 0) or connectivity preservation. Parameters
were τ = 0.05, ν = 0.05× 2552, and λ1 = λ2 = 1. This result was achieved after 500 iterations.

Figure 7. Fully 3D segmentation with the signed distance term (i.e., γ = 1) and connectivity preservation. Parameters
were τ = 0.05, ν = 0.05 × 2552, and λ1 = λ2 = 1. This result was achieved after 500 iterations and required 2,525,334
connectivity checks.

5. CONCLUSIONS

We have presented in this paper several low-level algorithmic improvements to a region-based level set segmen-
tation model. In particular, we integrated the signed distance preserving term of Li et al.5 into the Chan-Vese6

model and provided formulas for a semi-implicit discretization. We demonstrated the improvement of the semi-
implicit scheme over an explicit scheme and also showed how the signed distance preserving term can improve
the behavior of the level set function, the smoothness of the final contour, and the speed of convergence. We
illustrated that topology preserving level sets can often be problematic and introduced connectivity preservation
as an alternative, including experimental results on phantom and real data. We finally showed results on a fully
3D segmentation of the mouse spleen.
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