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Automated Feature Generation in Large-Scale Geospatial 

Libraries for Content-Based Indexing 

 

Abstract 

We describe a method for indexing and retrieving high-resolution image regions in large geospatial data 

libraries.  An automated feature extraction method is used that generates a unique and specific structural 

description of each segment of a tessellated input image file.  These tessellated regions are then merged 

into similar groups, or sub-regions, and indexed to provide flexible and varied retrieval in a query-by-

example environment.  The methods of tessellation, feature extraction, sub-region clustering, indexing, and 

retrieval are described and demonstrated using a geospatial library representing a 153 km2 region of land in 

East Tennessee at 0.5m per pixel resolution.   

 

1. Introduction 

Large geospatial data libraries of remote sensing imagery are being collected today in higher resolution 

formats both spatially and spectrally and at an unprecedented rate.  These libraries are being produced for 

many applications including hazard monitoring, drought management, commercial land use planning, 

estuary management, agricultural productivity [1], forestry, tropical cyclone detection, homeland security, 

and other intelligence and military applications [2, 3].  While these systems do provide end-users with 

useful geographic information data products, it is typically required that a user know precise information in 

a world-oriented dataset regarding a region of study if they are to achieve effective results.   

 

Techniques that facilitate search and retrieval based on image content, for example in a query-by-example 

environment, can provide an analyst or researcher with a rapid method for searching very large geospatial 

libraries with minimal query specification.  Content-based image retrieval (CBIR) refers to techniques used 

to index and retrieve images from databases based on their pictorial content [4, 5].  Pictorial content is 

typically defined by a set of statistical or semantic features extracted from an image to describe the spectral 



 3

content, texture, and/or shape of the entire image or of specific image regions.  Region-based image 

retrieval is referred to as RBIR [6].  The literature contains many descriptions of systems for analyzing and 

accessing geospatial libraries.  The systems that are most relevant to our method are described below.  

Other than these systems that consider content-based indexing of geospatial image information, most of the 

reported systems describe system evaluation methods, distribution architectures, and system interfaces that 

invoke classical geographical information system data, i.e., the metadata of a GIS library, not the content of 

the imagery that is provided from satellite and airborne image capture systems [7].  Some of these systems 

attempt to incorporate a combination of object detection and classifications to develop semantic 

information regarding the relationship between these objects and user needs [8].  Other papers describe 

specific details of the sub-elements of a retrieval system, e.g., the comparison of various similarity 

measures used [9], or the performance of a previously developed system [10].   

 

In a geospatial library environment, searches generally produce results such as the fraction of queried cover 

type existing in a defined region, e.g., describing the coverage of city, urban, forest or crop type.  Many 

CBIR methods for geospatial data attempt to produce a description of image primitives at the pixel level, 

e.g., based on local neighborhood structures, textures, or spectral content.  Schroeder, et al., in Ref [11] 

describes an index based on pre-extracted content using pixel primitives.  The authors demonstrate their 

method on Landsat Thematic Mapper (TM) and other data types that have coarse resolution (e.g., 30m per 

pixel) and their system uses a Bayesian-based method for probabilistic retrieval.  Datcu, et al., in Ref [6] 

present a prototype concept for a content-based information mining system.  Once again, the data presented 

is coarse (i.e., relatively low spatial content per pixel) and pixel-based primitives (i.e., features) are 

extracted for cover-type classification.  While this method does describe a measure of local texture using 

stochastic models, the Landsat TM data does not provide the high spatial detail that we wish to consider.  

Stefanidis, et al., in Ref [12] and Agouris, et al., in Ref [13] describes a sketch-based image retrieval 

environment that moves away from the CBIR concept of indexing based on inherent texture or structural 

features (which are typically scale-dependent) and instead incorporates a drawing method that searches the 

database for edge primitives with similarity to the sketch, e.g., a sketch of an airplane used to locate similar 

structures on the ground.  While this method moves away from the requirement of an “index image”, i.e., 
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the initial image required to begin a search in a query-by-example system, it also does not allow for pre-

indexing of image content since structures are located through a template matching procedure with the 

sketch.  Although the method can be described as reasonably scale-independent (i.e., the scale being 

specified through the sketch), the intense processing requirements in template matching and the inability to 

generalize the search process across the data system limits the technique.   

 

As the resolution of new imaging sources improves with new imaging platforms, the ability to 

automatically identify cover types – or more importantly structural details - by classifying pixels or local 

textures becomes problematic due to the highly-resolved, man-made and natural structures that are present 

in complex spatial arrangements.  Spectral band and local pixel neighborhood content techniques (e.g., 

commonly used for texture feature description [14]) do not adequately account for the increased structural 

information that resides in higher-resolution imagery.  Methods that have relied on coarser image content in 

the past must be modified or newly developed to optimally take advantage of increasing detail, i.e., they do 

not readily scale with resolution.   

 

Fig. 1 demonstrates this point through several examples of the high-resolution imagery that will be used 

throughout this discussion.  The indicated image regions represent a wide variety of cover types ranging 

from mixed deciduous and conifer forest lands to urban and industrial settings.  At these resolutions and 

with the complex proximities of the various man-made and natural structures, it is difficult to apply pixel 

classification methods to segment image content.  In general, pixel-based methods will result in many 

mixtures of discontinuous regions and ambiguity at the boundaries of different structural regions in the 

imagery.   

 

At the Oak Ridge National Laboratory (ORNL) we are developing methods to automatically describe these 

region types in high-resolution imagery so that a large image library can be efficiently assembled and 

indexed to perform content-based retrievals that will accommodate searches for specific spatial structure.  

This system encompasses three main development areas: (1) a software agent architecture to support 

distributed computing and to gather image content and metadata from the web, (2) a geospatial data 
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modeling component to register the imagery in a consistent world-coordinate system, and (3) a RBIR 

component to index imagery for search and retrieval.  In this paper we will focus primarily on the RBIR 

aspects of search and retrieval.  In Section 2 we give a brief overview of the architecture of the archive 

generation system that has been developed.  In Section 3 we review the critical components of our image 

region description and indexing approach. In Section 4 we describe the indexing methods used and the data 

structures that are developed to facilitate efficient storage and access.  Finally, in Section 5 we present and 

discuss results obtained using the data set partially represented by Fig. 1, a total indexed land area of 

approximately 153 km2 (59 mi2) at 0.5m per pixel resolution.   

2. Overview of System Architecture 

At ORNL we have developed a system and architecture by combining novel approaches from three distinct 

research areas: software agents, georeferenced data modeling, and content-based image retrieval.  The 

resulting technology represents a comprehensive image data management and analysis system.  This 

system allows us to meet the challenges of organizing and analyzing large volumes of image data, and of 

automating the image consumption process to populate the database.  The overall system approach breaks 

down into three components: (1) an innovative software-agent-driven process that can autonomously search 

through distributed image data sources to retrieve new and updated information, (2) a geo-conformance 

process to model the data for temporal currency and structural consistency to maintain a dynamic data 

archive, and (3) an image analysis process to describe and index spatial regions representing various natural 

and man-made cover types.   

 

Fig. 2 represents the agent-based architecture of our design. There are five types of agents that are 

represented in this system. The Coordination Agent controls the workflow between the different agents. 

The Crawler Agent performs a depth-first search for image links on potential websites (in our case, only 

URL’s ending with .edu, .gov and .net).  The Download Agent downloads images for all the image links 

generated by the Crawler Agent.  The Download Agent coordinates with the image repository to ensure that 

the image does not already exist in the repository or that the image is newer or has a higher resolution than 

the existing one. 
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The fourth type of agent is the Markup Agent.  This type of agent creates XML files that have images 

marked up with their properties and metadata.  For each image in the repository, this agent extracts image 

properties like height, width, bit planes, etc.  In addition, this agent extracts geospatial information like the 

images bounding box coordinates from the accompanying metadata/world file.  After collecting this 

information, it creates an XML file for each image in the image repository using all of the above-deduced 

properties.  The XML files are then stored in a separate XML Repository. 

 

Finally the fifth agent type, Extractor Agents, perform preprocessing of the images.  Typically each 

Extractor Agent runs on a separate processor so that images can be processed in parallel.  An image is first 

segmented into block segments of size 128×128 pixels.  Once the image segments are created, a feature 

vector file describing each segment is created by making use of the image properties in the XML file and 

the feature extraction methods described below.   

 

To deploy this agent architecture, we used the Oak Ridge Mobile Agent Community (ORMAC) framework 

[15].  This framework has been under development over the course of several agent-based research 

projects. ORMAC is a generic agent framework providing transparent agent communication and mobility 

across any Internet connected host [16]. 

 

The overall purpose of this agent system is to provide a comprehensive process for the continuous 

gathering, description, indexing, and datamining of a dynamic, high-resolution geospatial library.  The 

remainder of this paper will focus primarily on the methods being developed for image feature description, 

sub-region segmentation, and indexing, i.e., once the geographic data has been located and brought into the 

system by the agent architecture.   

3. Image Analysis  

Once the imagery has been downloaded by the software agents, our goal is to generate a succinct 

description of an image-dependent number of contiguous areas.  Fig. 3 provides an overview of the process.  
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Our approach begins with an image tile, for example of the size represented in Fig. 1.  For this paper we are 

using image tiles that are 3100x3100 pixels representing a size of 1,750m on a side.   

 

The tiles are tessellated into 128×128 pixel segments corresponding to 64m × 64m area.  The segment size 

was determined heuristically by ensuring that various cover structure would be adequately represented in 

each segment.  Fig. 4 shows examples in clockwise order from the upper left of four cover types: 

agricultural, forested, suburban, and industrial.  A number of structure-oriented features are extracted from 

each segment.  These features are reduced using a PCA/LDA method [17] to provide a short-length vector 

for segment clustering by a region growing procedure to organize similar segments into contiguous groups.  

Each contiguous group represents a sub-region in the original image tile and a summary feature description 

is generated for indexing.  Also, the region boundary is run length encoded for efficient storage in the 

database.  Finally, an indexing tree is developed using the region features by application of an approximate 

nearest neighbor (ANN) method as described in Section 4.  The indexing tree provides O[log2(n)] retrieval 

efficiency from the database through a query-by-example RBIR.  

 

3.1. Feature Analysis  

For this research, we have focused on features that measure the texture and structure of the image 

segments.  The spectral attributes of an image segment are also valuable and have been used by many 

researchers to classify cover types in geospatial data [6, 11, 18].  But over large geospatial extents, spectral 

information can unintentionally limit a query-based search to a confined region.  This is demonstrated by 

considering the Landsat TM data shown in Fig. 5 (30m per pixel resolution).  Although we are not using 

Landsat TM data for this study, the four regions show agricultural areas over a large geographical distance 

and include Maine, Virginia, Tennessee, and Florida.  Although the same three spectral bands were used to 

visualize crop regions, the spectral content varies tremendously.  The implication is that although it may be 

straight-forward to locate other agricultural regions in Maine using a Maine-based query composed of 

spectral features, it will be difficult to locate agricultural regions in Tennessee or Florida due to the 
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variation in the spectral content.  To avoid this unintentional bias in our indexing and retrieval process, we 

have adapted two feature sets that rely primarily on edge information to describe texture and structure.   

 

We characterize segment texture using local binary patterns (LBP) [19] and local edge patterns (LEP) [20]. 

In the rotation-invariant LBP texture operator, each 3×3 pixel neighborhood in the intensity image is 

thresholded by the intensity value of the center pixel. As there are eight neighboring pixels, each of which 

can be represented as a 1 or 0 (if above or below the center pixel value, respectively), it is evident that there 

are 256 (28) possible patterns that can result from this thresholding. Since, however, we desire rotational 

invariance, we note only those patterns that are unique under rotation. For example, the three patterns in 

Fig. 6 are all (approximately) equivalent under rotation about the center pixel. Applying this equivalence-

under-rotation idea, it can be shown that there are only 36 unique patterns. This implies that every pixel in 

the image can be assigned a number from 1-36 depending upon its LBP. The 36-bin normalized distribution 

(i.e., histogram) of the LBP values in a given 128×128 image segment hence provides 36 features for that 

region. 

 

The LEP is computed almost identically to the LBP, except that we examine 3×3 pixel neighborhoods in 

the image edge map rather than the image intensity values.  When considering the edge map, we must also 

consider the state of the center pixel, which is a 1 if the center pixel is an edge, or a 0 if not.  This doubles 

the number of potential patterns from 36 to 72 so that every pixel in the image can be assigned a number 

from 1-72 depending upon its LEP.  The 72-bin normalized distribution of the LEP values hence provides 

72 features. 

 

To characterize structure in a segment, we analyze the distribution of edge orientations. The motivation to 

this approach is that man-made structures generally have regular edge features oriented in only a few 

directions (usually two for buildings) while natural image regions have randomly oriented edges.  Different 

mixtures of man-made and natural structures will result in a variety of descriptions.   
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We compute local image orientation at each edge pixel using steerable filters [21].  We then find the 64-bin 

histogram of the edge orientation over angles from -90 to +90 degrees. The edge orientation distribution for 

a man-made structure is shown in the top of Fig. 7 (a) and that for the natural image is shown in the bottom 

of Fig. 7 (a). Note in the top of Fig. 7 (c) that there are two peaks in the edge orientation distribution near -

80 degrees and +10 degrees that correspond to the orientations of the building. The distribution for the 

natural scene in the bottom of Fig. 7 (c) however, is approximately uniform. Since we require that the 

stored features be invariant to rotations of the source image, we next take the discrete or fast Fourier 

transform of the 64-point edge orientation histogram and keep the magnitude of the first 32 points as the 

final features. The magnitude of the DFT or FFT is invariant to circular shifts of the data. 

 

The total number of texture and structure features used at this point is therefore 140 (i.e., 36+72+32).  

Subsequent to the feature extraction step we apply a PCA and LDA process that results in a reduction from 

140 to 8 features per image segment.  These features are the basis of geospatial clustering and indexing for 

search and retrieval. 

 

3.2. Geospatial Clustering 

Once the features of the image segments have been extracted, it is possible to use this feature vector as an 

index for retrievals.  Since there are generally a large number of contiguous 128×128 segments that define 

a content-based region (e.g., forested, suburban, etc.), we seek to group neighboring segments with similar 

features together to form a sub-region within an image tile or tiles.  We perform a geospatial clustering 

procedure using a region growing technique to connect large contiguous and homogeneous segments of 

similar structure and texture characteristics.   

 

Region growing is initialized by randomly selecting a seed segment at location (x,y), where (x,y) designates 

a coordinate of the corner or centroid of a segment.  A segment with feature vector v(x,y) is merged with a 

neighboring segment with feature vector v’(x±1, y±1), or with a segment group with mean vector <v’> if, 
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- the coordinate of the neighboring segment or of the closest segment group is an element of the 

set {(x±1, y±1)}, 

- |v-v’| < T1 or |v-<v’>| < T1, where T1 is a user-specified threshold, 

- the resulting variance, σ2, of the new segment group is less than T2, where T2 is a user-

specified threshold used to limit the variance. 

 

The merging process is continued until all the segments in the image tile have been tested.  A subsequent 

step is then performed on this data to reevaluate smaller sub-regions for connectivity.  During this second 

stage, a region merging operation is performed to join independent segments to existing sub-regions if, 

 

- the segment is spatially connected to one or more sub-regions (i.e, a sub-region being defined 

as > 1 connected segment from the initial clustering pass)  

- the feature vector distance, |v-<v’>|, between the segment and the sub-region is the lowest 

among all of the independent sub-regions neighboring the segment, and, 

- the resulting variance of the newly merged region does not exceed a user-defined threshold, 

i.e., |σ2| < T3. 

 

Once the contiguous segment regions have been determined, each segment group (image sub-region) has 

16 descriptive features associated with it, i.e., each sub-region is described by vector w = (<f1>, <f2>, …, 

<fN>…, σ1
2, σ2

2, …, σN
2)t, for N=8, where <fn> is the average of the n-th feature across the ensemble of 

segments in that group, and σn
2 is the corresponding variance of that feature.  It is this sub-region 

description that is used for indexing and retrieval in the RBIR library.  Fig. 8 shows typical results of this 

merging process.   

4. Database Indexing 

The goal of indexing is to organize the image data (e.g., filenames, features, indexing codes, etc.) in the 

database such that a ranked list of nearest neighbors can be efficiently retrieved in response to a query 

without performing an exhaustive comparison to all the records in the database.  For our RBIR system this 
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is achieved by generating a binary decision tree of the image features, w, described above.  A bin is defined 

as a bottom-level element in our tree structure, sometimes described as a “leaf” or terminal node, that 

contains a small list of images, e.g., a bottom-level bin may contain a list of image vectors {wa, wb, wc, …}.  

Under our RBIR architecture, a query vector is compared at the top level to each of two sub-nodes and a 

decision is made as to which sub-tree to take.  There are many ways to implement decision trees.  For this 

work we have implemented an ANN indexing and search method that builds on kd-tree methods [22, 23].  

Whereas an exhaustive nearest-neighbor search of the n vectors (i.e., images) in the database would be of 

O(n) computations, the kd-tree approach is of O(log2(n)).  This is explained through Fig. 9 that shows a 

simple example of a two-dimensional feature space, (fx, fy), containing 18 image vector points partitioned 

into a kd-tree structure where each bin, or leaf node, contains 3 points (i.e., image vectors).  The kd-tree 

method allows for the rapid retrieval of the closest bin to the query point, Q, but the data in this bin are not 

necessarily the closest points and the nearest-neighbor result can be in error by an amount, ε. 

 

The ANN method incorporates a search window that results in the collection of neighboring bins about the 

query point.  As this window increases in radius, the nearest neighbor error, ε, decreases, but the 

performance of the system also decreases to O(n).  The efficiency of the ANN method is proportional to 

O((1/ ε)N/2log(n)), where N is the dimension of the feature space, n is the number of data points (i.e., 

indexed regions in the system), and ε  is the nearest neighbor error [22].  The nearest-neighbor error is 

therefore inversely proportional to the size of the search window as shown in Fig. 9.  As the radius of the 

search window increases, neighboring bins containing additional image vectors are included in the final 

nearest-neighbor search.  As the radius continues to grow, the system approaches the complexity of an 

exhaustive nearest-neighbor search.  Therefore, the accuracy of the RBIR system is selectable as a trade-off 

between nearest neighbor performance and computational efficiency.  Through this approach we have 

demonstrated retrieval efficiencies on the order of 5 seconds for 100,000 indexed images, which scales to 

on the order of 15 seconds for a database of 1,000,000 images [23].   

 

Once the image features and their corresponding bins in the kd-tree have been determined, the image data 

structure is added to the database as shown schematically in Fig. 10.  Each image tile in the data set is 
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comprised of a previously undetermined number of sub-regions.  In the database, a unique identifier, UIDn, 

is assigned to each image sub-region (i.e., a segment cluster), following this is the path to the image tile in 

which it resides, the run-length-encoded (RLE) boundary of the sub-region, and the set of features and the 

bin code for the tree search.  Also note in the figure that multiple sets of features and bin codes are 

represented.  With this RBIR architecture, we can easily append the system to include other sets of features.  

For example, we may add spectral features to the query process or we may include other metadata 

associated with the imagery to augment query flexibility.  Fig. 11 shows this schematically in terms of a 

Venn diagram.  In our previous implementation of this system for industrial applications [23, 24], a query 

is performed against each discrete category of features for which an independent indexing tree has been 

generated.  The returned vectors that overlap these sets (i.e., the reduced set representing the Boolean 

intersection in Fig. 11) are concatenated and ranked for display relative to their distance from the query 

vector, dn(Q,wn), where dn(Q,wn) = || Q - wn ||.  A similarity value is determined based on this distance as 

Sn(Q,wn) = 1-dn(Q,wn) / √N, where N is the dimension of the concatenated feature space and the metric 

ranges from [0,1], with 0 being most dissimilar and 1 being most similar.   

5. Results  

The results presented here are for a geospatial library composed of 50 image tiles (3500x3500 pixels, 

1750m×1750m, 0.5m per pixel) representing approximately 153 km2 of land in and around the U.S. 

Department of Energy’s Oak Ridge Reservation [25, 26].  For this demonstration, the region (i.e., over all 

tiles) was tessellated into 39,200 segments of size 128×128 pixels each.  Features were then extracted for 

each of the segments, which were subsequently clustered as described in Sections 3.1 and 3.2 above.  The 

number of sub-regions developed through geospatial clustering was 4,810, resulting in a reduction of 88% 

in the number of unique, spatially distinct sub-region objects indexed for retrieval.  Fig. 12 shows a 

composite view of the entire geospatial library in (a) along with a representation of the sub-region 

segmentation achieved through clustering of the image segments in (b).  Note that many of the large, 

contiguous areas of forest and water regions have been clustered, therefore reducing the complexity of the 

database (e.g., through the reduction of the number unique indices that must be maintained) and the 

simplification of the search environment for the user, e.g., by reducing the need to view many image 
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segments of nearly identical content.  Also note that the urban and industrial region types have maintained 

higher granularity in the system.  These clustered regions are typically smaller due to their more complex 

and dissimilar structural content.  This also benefits the user when a detailed search for subtle differences in 

man-made structure is the query goal.   

 

For demonstration purposes, we have indexed the original 39,200 segments in one descriptive dataset, and 

the 4,810 sub-regions in another dataset, where each set could then be queried as independent systems and 

compared.  Fig. 13 shows an example retrieval of several different cover types at the image segment level.  

In the figure, each of the images in the left-hand column of each row, (a) – (d), represents the query index.  

The remaining five images in each row represent the top five matching results of the query for an industrial 

complex in (a), suburban area in (b), an agricultural area in (c), and a specific search for striped parking lots 

and roadways in (d).  Note the generality and flexibility of the system to locate imagery of an extreme 

variety of cover types and detail using only eight structure-based features (from the original 140).   

 

Although this type of segment-level query can be useful to an analyst, it can also provide too much 

redundant information regarding large spatial extents of visually similar imagery.  For example, forested or 

agricultural regions may occupy a large fraction of the data library in a rural region such as exists in this 

dataset.  An ability to collect together these large geospatial regions, or alternatively, to search for small 

man-made structures of a particular type distributed throughout large contiguous rural areas (i.e., a needle 

in a haystack) would also be useful.  Therefore, in Fig. 14, we show examples of two queries performed on 

the geospatially clustered regions of the image library, i.e., the second dataset.  In these screen shots, the 

query image is located in the upper left-hand corner of the display.  In (a) we see the results of a query 

based on an image sub-region of an industrial complex.  The returned images are ordered in terms of 

similarity, Sn(Q,wn), from left to right and top to bottom and range over the first 10 returned images from 

92% to 85% similarity.  In (b) we show the results of a query made using a large, contiguous deciduous 

forest region.  For this example, the similarity of the first 12 returned images ranges from 92% to 88%.  

Notice the difference in geospatial extent of the results returned by each query.  In the case of the industrial 

complex query, the size of the average sub-region is around 12 segments, while the size of the forested sub-
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regions is in the hundreds of segments.  This demonstrates the ability to query the library over both large 

and small geospatial extents providing both filtering of large, similar ranges of cover type, and small 

detailed regions of more complex man-nade structures.  Also, note that the similarity between regions (of 

any type) is a function of the structural properties of the entire sub-region and not the area or shape of the 

sub-region.  Although it is not clear that shape and area are relevant descriptive features for this system 

today, these or other features could easily be incorporated into the system in the future according to our 

discussion in Section 4 (e.g., see Fig. 11).   

6. Conclusions 

In this paper we have presented a novel method for automated feature extraction, spatial clustering, and 

indexing of a large geospatial image library.  The ability to describe broad structural content in high-

resolution imagery in a succinct format (i.e., 8 features) and cluster similar content to form large, 

contiguous image sub-regions is the unique contribution of this work.  Although retrieval experiments were 

described for a relatively small geospatial data set (153 km2), the system architecture and processing 

methodology have been developed to facilitate very large data libraries that can be maintained and updated 

in a dynamic manner through distributed computing within a software agent architecture.  The feature 

analysis and indexing approach used in this research provides an efficient and flexible method for 

describing a broad range of cover types while allowing a user to locate very specific structural detail in a 

query-by-example environment.  Future work in this area will include the incorporation of other 

geographical information metadata into the query process along with the addition of spectrally-based 

features for augmenting the specificity of local searches within a geospatial region of interest.  Our 

indexing procedure allows us to consider spatial relationships between sub-regions, which will also be 

investigated to strengthen the query process.  Finally, the infrastructure for detecting temporal changes is a 

fundamental element of our architecture.  In future work, we will take advantage of this system 

characteristic to automate/assist in the detection of geospatial change.   
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Figure Captions 

 

Fig. 1.  Examples of a wide variety of spatial data regions that may exist in a large geospatial image 

database including, (a) forest, (b) agriculture, (c) water structure (locks, dams, etc.), (d) urbanized 

area, and (e) industrial sites.  The  resolution of these scenes are 0.5m per pixel.   

 

Fig. 2.  Schematic representation of the agent architecture.   

 

Fig. 3.  Process flow shows tessellation of the input tile, feature extraction, segment clustering, 

indexing, and database building for query-based search and retrieval.   

 

Fig. 4.  Example image segments representing four cover types. 

 

Fig. 5.  Examples from the Landsat Thematic Mapper showing variation in spectral response across 

large geospatial extents.  Three of six spectral bands have been selected for display that emphasize 

variations in crop cover. (UL) Maine. (UR) Virginia. (LL) Tennessee. (LR) Florida. 

 

Fig. 6.  Three local binary patterns (LBP) that are equivalent under rotation about the center pixel. 

 

Fig. 7.  (a)Image segment, (b) edge map, and (c) edge orientation of (b). The top row represents a 

man-made structure and the bottom row a natural scene. 

 

Fig. 8.  Region growing results across three tiles from the image library.  Each bordered region 

represents one homogeneous, connected group of segments as determined by their texture and 

structure features.   
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Fig. 9.  An example of a simple feature space showing a kd-tree bin structure for an ANN search 

region about a query point, Q.  

 

Fig. 10.  Schematic diagram of database structure for the RBIR system. 

 

Fig. 11.  Diagram showing the search relationship between feature categories and metadata in the 

RBIR system.  

 

Fig. 12.  Composite image in (a) of the 50 image tiles comprising the 153 km2 geospatial library.  The 

composite in (b) shows the 4,810 sub-regions determined by spatial clustering the original 39,200 

segments.   

 

Fig. 13.  Examples of the retrieval of image segments.  The query images are in the left column.  (a) 

an industrial complex, (b) a suburban setting, (c) agriculture, and (d) striped pavement. 

 

Fig. 14.  Examples of the retrieval of geospatial clusters.  (a) An industrial complex, (b) a large 

expanse of deciduous forest, (c) an agricultural region.   

 



 20

 

 

Fig. 1 

 

 

download images

images and metadata 
(XML) database

image 
downloading 
agents

coordination 
agent

crawler agents

crawl 
for 

links

extract 
image 
links

I
N
T
E
R
N
E
T extractor agents 

(image analysis)

markup 
agent

download images

images and metadata 
(XML) database

image 
downloading 
agents

coordination 
agent

crawler agents

crawl 
for 

links

extract 
image 
links

I
N
T
E
R
N
E
T extractor agents 

(image analysis)

markup 
agent

 

Fig. 2 

(a) (b) (c) (d) (e) 



 21

 

software agents 
bring in image 
tiles from a 
region

tessellate tile 
into segments

extract 
segment 
features

perform feature-
based clustering

generate 
region 
features

run-length 
encode 
region 
boundaries

develop ANN 
indexing tree

build tables 
for database

software agents 
bring in image 
tiles from a 
region

tessellate tile 
into segments

extract 
segment 
features

perform feature-
based clustering

generate 
region 
features

run-length 
encode 
region 
boundaries

develop ANN 
indexing tree

build tables 
for database

software agents 
bring in image 
tiles from a 
region

tessellate tile 
into segments

extract 
segment 
features

perform feature-
based clustering

generate 
region 
features

run-length 
encode 
region 
boundaries

develop ANN 
indexing tree

build tables 
for database

 

Fig. 3 

 

 

 

Fig. 4 



 22

 

 

Fig. 5 

 

 

 

Fig. 6 

 

 

 
1

1

0 0

0

00

0

0

0

1 0

0

00

1

1

0

0 1

0

00

0



 23
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