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Abstract— Assuming a Laplacian distribution, there ex-
ists a well known method for optimally biasing the recon-
struction levels of the quantized AC DCT coefficients in the
JPEG decoder. This, however, requires an estimate of the
Laplacian distribution parameter. We derive a new, maxi-
mum likelihood estimate of the Laplacian parameter using
only the quantized coefficients available at the decoder. We
quantify the benefits of biased reconstruction through exten-
sive simulations and demonstrate that such improvements
are very close to the best possible resulting from centroid
reconstruction.

Keywords— JPEG, JPEG decoding, JPEG reconstruction,
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I. Introduction

DESPITE its growing age, JPEG image compression [1]
is still used in a wide variety of applications, including

onboard digital camera storage and consumer digital imag-
ing. Much recent work has focused on reducing artifacts in
JPEG images via decoder modifications or postprocessing;
some examples are reviewed in [2]. One decoder modifi-
cation, noted previously in both [3] and [4], is to bias the
reconstructed AC DCT coefficients since the standard, bin
center reconstruction is suboptimal. Assuming a Laplacian
distribution, the MSE optimal bias is well known [3]. First,
however, the Laplacian parameter λ must be estimated. In
this letter, we derive a new, maximum likelihood (ML) esti-
mate for λ and perform experiments that demonstrate the
benefits of biased reconstruction.

In the JPEG decoder, the reconstruction process assigns
all coefficients in a given bin to the center value of that
bin. For a given coefficient Cij , the JPEG quantization-
reconstruction process can be represented by the following
equations:

nij = round
(
Cij
Qij

)
, (1a)

Cqij = nijQij , (1b)

where Qij indicates the quantization bin width for the
given coefficient, nij indicates the bin index in which the
coefficient falls, and Cqij represents the reconstructed coef-
ficient. Considering the distribution of the AC (i 6= 0 or
j 6= 0) coefficients, it is well known that bin center recon-
struction is suboptimal (except for the zero bin). Referring
to Fig. 1, any unquantized coefficient Cij in the bin denoted
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Fig. 1. Example AC coefficient distribution. Bin centers (i.e., stan-
dard reconstruction values Cqij = nijQij) are indicated by the

“◦” symbols. For nij = 1, the “×” symbol indicates the center
of mass of the distribution over the shaded region.

by the shaded region (nij = 1) will be reconstructed to the
bin center, Qij . The minimum MSE is achieved by recon-
structing to the centroid of the distribution over the given
bin, as indicated by the “×” symbol in Fig. 1.

II. Optimal Reconstruction

Although the results of previous studies [5]-[8] indicate
that generalized Gaussians give the most accurate represen-
tations of the AC coefficient distributions, we employ the
more commonly used Laplacian distribution. The Lapla-
cian is more tractable both mathematically and compu-
tationally, and, as will be noted in Section IV, produces
results very close to the best achievable.

The Laplacian distribution,

p(c) =
λ

2
e−λ|c|, (2)

is characterized by the single parameter λ. For a certain
AC coefficient (i.e., fix i and j), we let c = Cij be in the
nth bin. Note that the nth bin is given by the interval
In =

[
(n − 1/2)Q, (n + 1/2)Q

]
, where Q indicates Qij for

our fixed i and j. We seek ĉ ∈ In to minimize the MSE,
E
{
|c− ĉ|2

}
, for all c ∈ In. It is well known [3] that ĉ is the

just centroid of p(c) over In and can be written

ĉ = nQ+ b (3)

where

b = − sgn(n)
[Q

2

(1 + e−λQ

1− e−λQ
)
− 1
λ

]
. (4)

Equation (3) states that ĉ is just the bin center, nQ, plus
the bias term b given from (4). The bias b depends only on
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the sign of n and therefore needs only be computed once
for each of the 63 AC coefficients. The −sgn(n) term in (4)
simply ensures that the bias is in the direction of the origin.

III. Laplacian Parameter Estimation

In [3], an estimate of λ is found by simply computing the
variance, σ2, of the dequantized coefficients reconstructed
to bin center and then setting λ =

√
2/σ, which is a well

known relation between the Laplacian parameter and the
variance of the distribution. Here we derive a more rigor-
ous, ML estimate for λ.

Assuming the Laplacian distribution, suppose we have a
series of N observations of a given coefficient c = Cij (again
i and j are fixed), prior to any quantization. Referring to
these observations as ck for k = 1, . . . , N , it is easily shown
that the ML estimate of λ is given by

λML =
N∑N
k=1|ck|

, (5)

where it is assumed that the summation in the denominator
is not zero. On the decoder side, however, we do not have
access to the original, unquantized coefficients. Therefore,
we need to estimate λ from only the quantized coefficients.
Referring to the quantized coefficients as cqk, we seek λqML.
First, we note that quantization effectively transforms the
continuous distribution of (2) into the discrete distribution
given by

pq(n) =
∫ (n+1/2)Q

(n−1/2)Q

λ

2
e−λ|c| dc, (6)

where n indicates the bin index. Equation (6) leads to

pq(n) =

{
1
2 e
−λQ(|n|−1/2) (1− e−λQ), for n 6= 0

1− e− 1
2λQ, for n = 0.

(7)

To find λqML, we maximize (over λ) the log-likelihood func-
tion of pq(n) given by

L(λ; {cqk}Nk=1) = ln
[ N∏
k=1

pq(nk)
]
=

N∑
k=1

ln[pq(nk)] (8)

where nk indicates the bin index for the kth observa-
tion. After some significant manipulation, omitted here
for brevity, it can be shown that

λqML = − 2
Q

ln(γ) (9)

where

γ =
−N0Q

2NQ+ 4S
+√

N2
0Q

2 − (2N1Q− 4S)(2NQ+ 4S)
2NQ+ 4S

, (10)

and where N0 is the number of observations that are zero,
N1 is the number of observations that are nonzero, N is

the total number of observations (N = N0 +N1), and

S =
N∑
k=1

|cqk|. (11)

If S = 0, which might occur at high compression ratios,
then (9) is not valid. This, however, is not a problem since
reconstruction to zero is optimal for the center bin.

As an example, we consider the well known “lena” im-
age, encoded using the default JPEG quantization table
(i.e., scale factor of 1.0). In (12)-(14) below, we show
the bias magnitude tables computed using λML, λqML, and
λ =
√

2/σ (as suggested in [3]), respectively.

0 0.21 0.40 1.83 5.49 14.71 21.56 27.23
0.43 0.62 1.28 3.19 7.47 24.58 26.48 24.55
1.48 1.29 2.21 5.90 15.08 24.56 31.34 25.30
2.45 3.50 5.62 9.53 21.39 40.19 37.20 28.57
5.12 7.00 14.40 24.10 30.72 51.72 49.08 36.28
8.91 14.48 24.49 29.07 37.83 49.64 54.29 43.92
22.05 29.54 36.67 41.17 49.23 58.36 57.97 48.57
33.75 43.82 45.43 46.96 53.97 48.02 49.62 47.68

(12)

0 0.21 0.39 1.79 5.18 13.14 19.64 25.43
0.43 0.61 1.25 3.03 6.92 22.17 24.42 23.18
1.45 1.25 2.11 5.40 13.41 21.90 29.98 24.12
2.37 3.34 5.30 8.59 19.27 42.39 35.19 29.89
5.03 6.67 13.37 22.12 28.35 53.39 50.39 37.39
8.66 13.76 22.93 30.89 39.39 50.89 55.39 44.89
23.39 30.89 37.89 42.39 50.39 59.39 58.89 49.39
34.89 44.89 46.39 47.89 54.89 48.89 50.39 48.39

(13)

0 0.17 0.29 1.35 4.25 13.03 21.40 28.37
0.32 0.46 0.92 2.34 6.22 24.08 27.11 25.89
1.07 0.92 1.55 4.56 13.56 23.79 33.42 26.93
1.86 2.72 4.57 8.13 20.82 42.39 39.12 29.89
4.62 6.46 14.14 24.34 31.62 53.39 50.39 37.39
9.15 15.12 25.58 30.89 39.39 50.89 55.39 44.89
23.39 30.89 37.89 42.39 50.39 59.39 58.89 49.39
34.89 44.89 46.39 47.89 54.89 48.89 50.39 48.39

(14)

IV. Experimental Results

Thirty-three monochrome images (five were 512 × 512
pixels, the rest were 768× 512) were compressed using the
default JPEG (luminance) quantization table, scaled by
four different factors between 0.5 and 2.0. For scaling fac-
tors greater than 2.0, corresponding to increased compres-
sion ratios, we found that the benefits from biased recon-
struction were outweighed by the large number of AC co-
efficients that were quantized to zero. The encoded images
were decoded using the standard JPEG, bin center recon-
struction as well as biased reconstruction, as given by (3).
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TABLE I

Average PSNR improvements, in dB, over standard JPEG for

biased and true bin centroid reconstructions.

Quantization Table Scaling
Dequantization Type 0.5 0.75 1.0 2.0
Biased, λML, Eq. (5) 0.30 0.27 0.25 0.20
Biased, λqML, Eq. (9) 0.35 0.32 0.30 0.24

Biased, λ from [3] 0.35 0.31 0.29 0.24
True Bin Centroid 0.42 0.38 0.36 0.30

For biased reconstruction, both λML from (5) and λqML

from (9) were used as estimates of the Laplacian parame-
ters. Recall that λML is computed from the DCT coeffi-
cients prior to quantization, which are only available at the
encoder side, while λqML is computed from the quantized
coefficients available at the decoder. The former method
is not compatible with the JPEG standard, as it requires
overhead information to convey the λML values to the de-
coder. The bits resulting from this overhead have been ig-
nored in our simulations, as we are using this case mainly as
a comparison point. In our experiments, the coefficients of
an entire image were used to compute the λML and λqML

values once. We also performed these experiments using
the estimate of λ suggested by [3]. In the final test, a best
case, albeit impractical, scenario was constructed. Prior to
quantization on the encoder side, the true centroid of each
bin (the average value of all the coefficients in that bin) for
each coefficient was computed and stored. For decoding,
each coefficient in a given bin was reconstructed to the true
centroid for that bin. This method is impractical because
of the large overhead (ignored in our simulations) and in-
compatibility with the JPEG standard. It does, however,
provide us with the best possible improvement for the sake
of comparison.

Quantitative results from these experiments are summa-
rized in Table I. Let Ps represent the PSNR between the
standard JPEG decoded (bin center reconstruction) im-
age and the original, uncompressed image. Let Pm be the
PSNR between the modified reconstruction (either biased
or true bin centroid), image and the original, uncompressed
image. We refer to PSNR improvement as the difference
Pm − Ps. The quantities given in Table I are the average
of this difference over the 33 test images for the indicated
quantization table scaling.

As evident in Table I, biased reconstruction provides
modest improvements in PSNR when compared to bin cen-
ter reconstruction. There were no individual cases where
biased reconstruction caused a relative loss in PSNR. It is
well known, however, that such PSNR improvements do
not necessarily imply subjective improvements in image
quality. Careful analysis of our test images indicated that
biased reconstruction produced little subjective improve-
ment. In a few cases, some mild edge “ringing” artifacts
were reduced. Generally, however, the differences between
the standard JPEG decoded images and the biased recon-
struction images were difficult to detect. Note also from
Table I that using the Laplacian parameters estimated from

the quantized coefficients (λqML) actually performs better
than using the true ML parameters estimated from the un-
quantized coefficients (λML). Table I also indicates that
the method for estimating λ suggested in [3] performs just
as well as our more rigorous ML approach and might there-
fore be more practical if computational complexity is a lim-
iting factor. Finally, we note that the best case, true bin
centroid reconstruction is not significantly better than any
of the biased reconstructions. This validates the use of the
Laplacian, as it performs almost as well as the best possi-
ble, and yet requires little computation when compared to
the generalized Gaussian.

V. Conclusions

Assuming a Laplacian distribution for the unquantized,
AC DCT coefficients, we derive the ML estimate of the
Laplacian parameter using only the quantized coefficients
available to the decoder. Experiments indicate that biased
reconstruction with this estimate gives modest improve-
ments in PSNR and that these improvements are close the
the best possible, true bin centroid reconstruction. These
experiments also show that a previously proposed, less rig-
orous estimate of the Laplacian parameter performs just
as well as the ML estimate, and might therefore be the
method of choice for minimal computation.
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