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Resampling and Reconstruction
with Fractal Interpolation Functions

Jeffery R. Price Student Member, IEEBNd Monson H. Hayes lliFellow, IEEE

Abstract—An alternative form of the fractal interpolation
function (FIF)—previously unmentioned in the signal processing
literature—is noted. This form highlights a simple relationship
between fractal and linear interpolation. Using this relationship,
many FIF problems can be reduced to a matrix/vector expression.
This expression provides a more powerful way to employ the FIF
for interpolation and permits its adaptation for reconstruction.
Additionally, the alternate form of the FIF allows the construction
of fractal functions whose piecewise integrals match observed
data. 0+

1t

Index Terms—Fractal interpolation, reconstruction.

I. INTRODUCTION AND REVIEW

I
I
I
RACTAL interpolation, first described in [1], has been :
used for various data visualization and modeling problems | |
[2]-[7]. In this letter, we describe a form of the FIF that-1| : : :
simplifies its implementation and allows it to be used for BT i
reconstruction. In this first section, we briefly review the classi-
cal form of the FIF as it appears in previous signal processing
literature. We then present an alternate form detailed in [1]
but largely ignored since. In Section Il, we describe how thisith subinterval endpoint constraints
alternate form leads to a matrix/vector expression for many FIF <x0 ) <xn_1 ) .
Wy = an

Fig. 1. Example fractal interpolation function with' = 3.

problems and suggest how this expression can be exploited for
reconstruction. In Section Ill, we describe how the alternate
form also permits reconstruction of a continuous function w,, <$1\> = <”7") forn=1,---,N. (4)
when the observed data represents its piecewise integrals. A YN Yn
simple example of these reconstructions is given in Section IFquations (3) and (4) imply that each mayp, horizontally
In Section V, we make some closing comments. “shrinks” (by a factor ofa,) and vertically scales (by a
For uniformly sampled signals, we begin with a data set factor ,,) the entire function over the intervdd and maps
it to the piece of the function over the intervdb, =
[€rn—1,2,] (S€€ Fig. 1). For these mappings to be contractive,
it is necessary thata,| <1 and |y,| <1. With each ~,
(referred to ascontraction factory considered a (fixed) free
parameter,a,| <1 is guaranteed by the constraints of (4).
flzp) =y, fornel0,1,---,N]. (2) The contraction factors, however, must be chosen to satisfy
|v»| < 1. Under these conditions the collection of mappings
Following the standard form used in the signal processifines a hyperbolic iterated function system whose attractor
literature, FIF's are constructed usidg affine mappings of set inR? is the graph of a continuous function satisfying (2).

Yo Yn—1

{(®n,yn) € D xR:n €10,1,---, N[} (1)

where D = [0,1] and z,, = n/N. A continuous function
f: D — R is sought that interpolates the data according to

the form An equivalent form for the FIF associated with (1)—(4) is
@ a, 0\/[z Cn described in [1]. It can be expressed as
Wy, = + forn=1,--- N
A VAN VA wn(,y) = (Lu(2), Fu(2,9)) (5a)
(3) Ly(z) =ayz + ¢y (5b)
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are allowed so long as(x) passes through each of the data We now envision vectorg, h € RM+1 andy € RY. Letting
points, b(z) passes through the first and last data points agg = yix) — bix) We create a matrix) € RN
both are continuous.) In this alternate form, the subinterval

endpoint constraints become 1 q
= . 10
L.(x0) =2n—1 and L,(zn) =2, @ ' . (10)
Fo(zo,90) =yn—1 and F.(zn,YN) = YUn- (6) 0

whereg = (0 7" so that we can express the FIF
Examining (5) we note thak,(z,y) = f(L,(z)) and hence proble?n of( (g)l giQmpIy anS) P
F) = he) + walF(L7H @) = WL ()] f=htQr ()
forz e D, (7) For interpolation purposes,is arbitrary so long agy, | < 1.

In many cases, however, we might be interested in choeging
29 that f satisfies some properties. For instance, in speech
met‘erpolation it might be prudent to make the relationship
betweenf and h as close to linear phase as possible. For
signals that are known to exhibit certain fractal properties, we
1 might try to maintain some estimated fractal dimension as in
x4+ —=(n-—1). (8) [2]. These are, in essence, reconstruction problems.

A more common reconstruction problem can be stated
as follows. Suppose is a low-resolution observation of a
Il. RECONSTRUCTION BY INTERPOLATION higher-resolution signai € R]w-i—l. A known system model

. . . implies thaty and z are related linearly byy = Az where
Many interpolation and reconstruction problems can b/g e ROVHDX(M+D renresents some (FIR) distortion and
summarized as follows. Given &V + 1)-point signaly,,,

construct an(M + 1)-point signal f, (where M > N) that downsampling. For this underdetermined problem an estimate
is consistent withy,, according to nsome model. For basic% Is sought so thafly — Az| is minimized. Referring to (11)
. . " : . Wwe letz = f and leth be some initial estimate of. (The
interpolation, the model states that represents actual points o . . \ '
on some continuous functigf{x) and ,, is a finer sampling of base function implicit in the matrix Q is defined by the first

this function. In reconstruction, the signal often represents _?_Eg I?esstuﬁt?r']ntssioﬁ';y\/\g;h:n Srgiil?n ;?i;]qmcl)r;)lziingo:nAgst d
the observation of a higher-resolution sigrfglthat has been g si9 bp P

distorted and downsampled. (The effects of noise are ncgtsamples of some fractal func_t lon. Note that (.11) provides a
: . X simple expression that can facilitate the selectionyofNote
considered in this letter.)

We begin with an(N + 1)-point signaly, and seek a also thath(x) is arbitrary in this problem sé& can be refined

signal £, which has P new points inserted between eveer desired. An example of this approach is given in Section IV.

sample ofy,. This corresponds to upsampling by a factor
of U = (P + 1). The interpolated signaf,, will then have
(M +1) = (N + 1) + NP total points. Although there In some reconstruction problems, the observed data
are various methods [5] to compute points of an FIF, waight represent the piecewise integrals of an unknown con-
are interested in onlyV P specific points. Assuming certaintinuous function [8], [9]. In other wordsf(z) is sought

relationships betweeV andl/ (to be described shortly), we such thaty, = [, f(z) dz where nown € [1,---,N].
can use (7) to write Applying (7), we can construct such a fractal function. We

can then either produce actual points of the resulting function
as described previously or integrate over smaller intervals in

which is the key expression used in the next sections. In t
case of uniform sampling o® = [0, 1] we havea,, = 1/N
and (5b) becomes

I1l. RECONSTRUCTION BY INTEGRATION

Turae = Powrsr + (g0 = b)) ©3)  rder to implement resampling.
(k) = Ek (9b) Simplifying the work in [1] for our purposes, we use (7)
v to write
wheren € [0,1,---,N —1] andk € [0,1,---, P] (which ynz/ f(x) dx
excludes the very last poinfys11 = yn+1). The l(k) term Da
is derived from the inverse of.,,(z) in (8) and describes :%/ (f(L7 () — (L7 () da
how points of the entire signal propagate to points of each Dy,
subinterval. We have assumed thsit and U are such that +/ h(z) da. (12)
I(k) is indeed an integer ifD,1,---, N]. This can easily be D,

ensured by signal extension or application of the process t
pieces of the signal. Thg,) term represent&V + 1) samples

of the base function whilé,,; 1 indicates(M + 1) samples -7 / b d 13
of the height function. Yn = P+ Tl D(f(u) (w)) du. (13)

0Letting Py = [p, M(x) dr and substituting variables yields
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Next we letF = [, f(u) du andB = [, b(u) du, which ORIGINAL

gives F ‘ ; : :
Yn = hn + an(F = B)yn. (14) W\MW

We chooséi(z) andb(x) so thath(x) is some (again arbitrary) , OBSERVATION ‘ }

initial guess atf(z) while b(x) must satisfyb(0) = h(0)

and b(1) = h(1). Since F = ¥_, v, anda, = 1/N, /\/\/\/\/\/\/\M

only the contraction factory, of (14) is unknown. Since | ‘ ‘ ‘ ]

it is required that|y,| <1, a direct solution of (14) might INTERPOLATION

=)

seem infeasible, perhaps implying a constrained optimizatio
approach is necessary. There is, however, an easier methad. ]
First solve (14) fory,. If this yields |, | > 1 then adjusti(x)
over D,, so that the solution of (14) does yield, | < 1. For
example, we might begin with(x) a piecewise linear function
and change it to an appropriate quadratic avgrif necessary.
(This is the approach used in Section IV.) The result is
function f(z) that satisfiesy,, = [ f(x) dz.

To resamplef(x) by integration we split eacl,, into P
equal subintervald} for & € [1,---,P] and then compute
the NP new integrals off(x) over these smaller intervals.
Assuming N/P is an integer, an expression similar to (14§his fashion and therefore has zero reconstruction error—i.e.,

can be derived: Af =y _ . _ _
For the integration-based reconstruction the first 64 points

of y were taken to be the piecewise integrals of some un-
known function f(z). This function was found as described

in Section Ill. The reconstruction error here is zero as well
since [p_ f(z) do = y, by construction. The function was
then integrated over quarter-intervals and the result scaled by
four to produce the INTEGRATION” plot shown in Fig. 2.

Q
T
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Fractal reconstruction examples.
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Fig. 2.

k=T + an(F* =B )y, (15)
* and i~
are the integrals off(x) and h(x) over D¥  respectively.
Letting D* represent the splitting of the entire domdinto
P subintervalsF~ andB" indicate the integrals of (x) and
b(z) over D* respectively. Note thak" can be computed by
summing the appropriate (and known) piecewise integyals V. CONCLUDING REMARKS

Note also that it might be desirable to scale the new samples|n this letter, we have noted an alternate form of the FIF

since they correspond to integration over smaller intervalgnd shown how it can be applied to reconstruction problems.
This will ensure that they are similar in scale to the origingdjthough only modest examples were given, the simplicity
data. An example of this approach is given in the next sectics. the approaches described should permit a wide variety of

forn € [1,---,N] andk € [1,---,P]. In (15), y*

fractal reconstructions.

IV. EXAMPLES

We now employ the reconstruction methods of Sections I
and IIl in order to upsample a short segment of a speech signial
by a factor of four. The original 257-point signalvas filtered
by a five-point FIR filter and then downsampled by a factor
of four, yielding the 65-point observatiog (3]

For the interpolation-based reconstruction—referring to
(11)—we seeky so thatA f = y or equivalently [4]

AQvy =y = Ah. (16)

[5]
Sinceh can be refinedy can easily be found so that (16) is ]
equality. The basic idea is to introduce an artificial contractior’]
factor yy41 and add an extra column t6) so that the 8]
matrix productAQ is invertible. Then (16) can be solved
for 4. The contributions tof from the artificial vy 41 and

any contraction factor for whichy, | > 1 are absorbed inth.

The “INTERPOLATION’ reconstruction of Fig. 2 was found in

El
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