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ROBUST DEFECT SEGMENTATION IN WOVEN FABRICS

Abstract

This paper describes a robust segmentation algorithm for
the detection and localization of woven fabric defects. The
essence of the presented segmentation algorithm is the
localization of those events (i.e., defects) in the input
images that disrupt the global homogeneity of the back-
ground texture. To this end, preprocessing modules,
based on the wavelet transform and edge fusion, are
employed with the objective of attenuating the background
texture and accentuating the defects. Then, texture fea-
tures are utilized to measure the global homogeneity of the
output images. If these images are deemed to be globally
nonhomogenous (i.e., defects are present), a local rough-

ness measure is used to localize the defects. The utility of

this algorithm can be extended beyond the specific appli-
cation in our work, that is, defect segmentation in woven

fabrics. Indeed, in a general sense, this algorithm can be

used to detect and to localize anomalies that reside in
images characterized by ordered texture. The efficacy of
this algorithm has been tested thoroughly under realistic
conditions and as a part of an on-line fabric inspection
system. Using over 3700 images of fabrics, containing 26
different rvpes of defects, the overall detection rate of our
approach was 89% with a localization accuracy of less
than 0.2 inches and a false alarm rate of 2.5%.

1. Introduction

Measurement of quality during the production of
woven fabrics is highly important to the textile industry in
lowering costs and improving the finished product. Pres-
ently, much of the fabric inspection is performed manually
by human inspectors, using off-line stations. Many defects
are missed, and the inspection can be inconsistent depend-
ing on the training and the skill level of the personnel. As a
result, the textile industry has been moving towards auto-
mated fabric inspection. Up to this point, most, if not all
such automated technologies have been off-line, inspect-
ing large rolls of fabric after it has been produced. To pro-
.vide the most precise control of quality, however, the
fabric is required to be monitored as it is constructed, so
that corrections can be made immediately, minimizing the
quantity of poor-quality fabric. Higher production speeds
make the timely detection of defects more important than
ever. With inspection on the machine, the need for 100%
manual inspection is eliminated. In addition, a computer
vision-based system provides consistent inspection results

that correlate with today’s quality control standards.

A wide variety of fabric defects can occur during the
weaving process. Many are due to machine malfunctions
while others are because of faulty yarns. For air-jet looms,
which are most widely used, the predominant defects are
broken picks (mispicks) and slubs. These, and other less
widely used looms, can have machine faults that produce
additional defects, such as holes, oil spots, or dirt. These
assorted defects can produce a wide range of visible
effects on the finished fabric. Warp or fill defects tend to
be long and narrow, slubs or lint can produce point

.defects, and barre defects change the texture of the weav-

ing pattern. It is interesting to note that the majority of
commonly-occurring defects have a preferred orientation, '
either in the direction of motion (i.e., warp direction) or
perpendicular to it (i.e., pick direction). '
Automation of fabric inspection has been a topic of
considerable research. The inspection systems are pre-
dominantly optically based and primarily use either line-
scan [1-3] or area [4] CCD sensors for image acquisition.
Complete real-time systems have been developed that
emphasize the high-performance image acquisition and
computing hardware requirements for discrete defect
detection and classification [5,6]. Also widely reported,
are the image analysis methodologies, including those
based on textural models for defect detection [7,8], as well
as neural or knowledge-based techniques for defect classi-
fication [9-11]. A real-time defect detection system using
the wavelet transform and fuzzy inferencing has also been

~ described in [4,12].

The fabric inspection system, developed by the authors
in early 1995 (patent pending), differs from existing sys-
tems in two crucial ways. First, it is on-line or on-loom,
and secondly, it is equipped with a robust defect segmenta-
tion technique, which is thoroughly tested under realistic
conditions and is found to have a high detection rate, high
accuracy, and a low rate of false alarms. The results of
comparable tests have yet to be reported for the competing
systems or segmentation algorithms. Conceptually, how-
ever, one reported segmentation technique [12] takes our
idea of preprocessing the fabric images using the wavelet
transform to an interesting level by suggesting an optimal
derivation of the wavelet bases. ;

In what follows, we describe the proposed segmenta-
tion technique in detail and illustrate its efficacy with real
images of fabric. N




2. Defect Segmentation Algorithm

In this section, a detailed description of the defect seg-
mentation algorithm is presented; see Fig. 1. It should be
noted that the utility of this algorithm can be extended
beYond the specific application in our work (i.e., defect
segmentation in woven fabrics). Indeed, in a general
sense, this algorithm can be used to detect and to localize
anomalies that reside in images characterized by ordered
texture, given that two conditions are satisfied:

1. anomalies exhibit low in_tensity variation within their
boundary, and
2. relative to the textured background, they constitute a
small portion of the field of view.
The essence of the presented segmentation algorithm is to

localize those events (i.e., defects) in the image that dis-
rupt the global homogeneity of the background texture.

‘In what follows, the modules of the segmentation algo-

rithm in Fig. 1 are described and their efﬁcacy are demon-
strated using real i images of fabric.

2.1. Wavelet Transform Module

The wavelet transform module in the proposed segmen-

" tation algorithm constitutes a preprocessing step with the
objectives of attenuating the background texture and
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Figure 1. Flowchart for the proposed defect
segmentation algorithm.

accentuating the defects.

By wavelet transform, we are in fact referring to a spe-
cific class of the 2-D discrete wavelet transform called the
multiscale wavelet représentation (MSWAR) [13]. The -
notable advantages of MSWAR over the standard discrete
wavelet transform, popularized by Mallet [14], are its shift
invariance, as well as the fact that in MSWAR, the trans-
formed signals (or images) remain at full resolution with
every iteration. These properties are important when the
ultimate goal is the classification of segmented events,
because loss of resolution compromises the accuracy with

.which feature extraction is conducted.

The MSWAR of a 2-D  discrete image
fley), (x,y) = 1,2,...,N, with M levels of scale
reduction is a set of (3M + 1) images. These are the detaili
images at all levels of scale reductlon that is, for
j=12,..,.M, ‘

.« fhix, y) (contains no vertical edges),

* fi2(x, ) (contains no horizontal edges),

. f{},(x, ¥) (contains no horizontal or vertical edges),
plus the blurred version of f(x,y) at the lowest scale

level, fM(x, y) . An efficient algorithm for the generation

of these images has been devised [13], and is given below
for easy reference.
1. Given a low-pass and a high-pass filter, and assuming
that these filters are represented as column vectors
LP and HP, respectively, generate four 2-D kernels
as follows:

LP(LP)', HP(LP)', LP(HP)', HP(HPY)',
where (.)' represents vector transposition.

2.Forj=12,....M,

3.Forx=0,1,....,.N-1,

4,Fory=0,1,...N-1,

5. Allocate U TOW pointers, p,, Pis eoos Puci ,and u col-
umn pointers gy, q;, .., q,—; s Where u indicates the

support of the selected filters.
6. Initialize the above pointers as follows:

"Po =X P = pyt +271 L,
pu——I = pu 2+2] l d

qo =y, 41 = qg+27,
Gu-1 = Gy~ 2+21 ,
7. Convolve the generated kernels with the elements of

the signal f/~', where f’ = f(x,y), as addressed
by the above pointers. The results are the (x, y)"' ele-

ments  of the  four output  signals
2 fan fas and fh, | respectively.
8.Next y.




9, Next x.
10. Next j .

The choice of the above-mentioned low-pass and high-
pass filters is application-dependent. Thus far in this work,
we have utilized Daubechies’ filters [15] for their compact
support and orthogonality. As reported in [12], other filters
can also be derived in an optimal fashion to match the
background texture of a given fabric image. An example
of the application of the above algorithm for the genera-
tion of MSWAR of a fabric image is shown in Fig. 2.

Recall that the objectives in employing the MSWAR
. are to attenuate (in a scale-dependent fashion) the back-
ground texture and to accentuate the defects. The question
is: at what scale level and for which detail image are these
objectives met. In other words, for the example in Fig. 2,
how can the image representing f3, be selected automati-
cally for further processing. The appropriate choice of j is
strongly dependent on the choice of filters for MSWAR, as
well as the resolution (i.e., number of pixels per unit area)
of the captured images. Fortunately, such information is
almost always available. The choice of the appropriate
detail image, on the other hand, depends on information
that is seldom, if ever, available a priori (e.g., defect orien-
tation). This is the reason for the utilization of the edge
(detail image) fusion module, which will be described
next.

2.2. Edge Fusion & Signal Conditioning Modules

As mentioned above, the edge fusion module is to pro--

duce an output, o(x, y), in which for a preselected j, the
pixels in the detail images that correspond to the defects
are fully preserved. Although there are numerous ways in
which this can be accomplished, we have chosen to utilize

the following fusion formula:

o(x, )—{fl+f2+f3}_' (1)
{[fIsz +[f1xf3]+[f2xf3]},

where

fi(% y) = minl£4(x y)]
max[ fl(x, y)1 - min[ fi(x, y)1’

Sfilxy) = (2)
for i = 1,2,3. Note that f; e [0, I] and that it is com-
puted for a selected value of j. To better understand the
behavior of this fusion scheme, it is useful to examine it in

‘a simpler form. This form, which is obtained by setting

f3 = 0 in Equ. 1, is known as Bernoulli’s rule of combi-

‘nation, and is often used to fuse two inputs [16]. It is

observed that in this form, for f,=constant , the map-
ping from f, to ‘o(x,y) is linear with
slope=1-constant and y-intercept = constant ;
see Fig. 3. Note that the fused output tends to follow one
of the inputs closely, if the other input possesses-low val-
ues. On the other hand, the input with very high values
tends to dominate the output, regardless of the value of the
other input. This is precisely what is needed in our appli-
cation, because defects in the detail images are repre-
sented by high values. ' '

An important issue that must be taken into account is
that high values in the detail images represent not only the
defects, but also the background texture. Therefore,
unconstrained inclusion of all pixels (from all three detail
images) in the fusion process, will not result in back-
ground attenuation. To address this issue, we have con-
strained the fusion process as follows. Because the input
image is assumed to be dominated by the background tex-
ture (rather than defect), the energy (sum of squared val-
ues) for each of the detail images is computed and

(b)

© )

Figure 2. (a) An image of a fabric with a pick defect (i.e., the dark streak). (b), (c), (d) MSWAR of the image in
(a)for j = 1,2, 3, respectively. Starting with the top, left-hand corner and moving clockwise, the output i images

in (b), (c), and (d) correspond to 7, fl, fd,, and fJ, .
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Figure 3. Output of the fusion scheme when one of
" :the two inputs is kept constant.

monitored. If, for a selected j, one of the three detail

images has an energy value that is disproportionately
larger than the others [see f%, in Fig. 2(b)], but approxi-
mately equal to that of its counterpart, then that detail
image is excluded from the fusion process. By its counter-
part, we are refefring to the corresponding detail image
that has been computed from a reference image (i.e.,
image of the same fabric as the input image, but with no
defects). The image in Fig. 4(d) is the outcome of the
application of the above fusion scheme to the detail
images of Fig. 2(c). :

The objective in utilizing the signal condltlonmg mod-

- ule is to make the defect pixels in the fused output more

homogeneous. This is accomplished by the standard tech-
nique of histogram equalization [17], which by increasing
the global contrast of the image, compresses the dynamic
range of the defect pixels; see Fig. 4(f). The importance of
this step in the segmentation algorithm will become more
apparent in the next section.

2.3. Global Homogeneity Module

As mentioned above, in the proposed segmentation
algorithm, defect segmentation is achieved by determining
those events that disrupt the global homogeneity of the
_background texture. As such, the local roughness and glo-
bal homogeneity module constitutes the essence of the
proposed approach. :

Fractal-based measurements, such as the fractal dimen-
sion and the correlation dimension have been utilized
extensively for quantifying surface characteristics (e.g.,

surface roughness) of image textures. The proposed tech-
niques for estimating the fractal dimension, however, are
unreliable for localized measurements, because they

- require adequately large data sets. In this work, two mea-

surements, based on the correlation dimension, are utilized
[18]. The first of these is a local measurement that quanti-
fies the surface roughness, while the second gives a mea-
sure of the surface homogeneity in a global sense.

Let a grey level image, f(x,y), be represented by a
point in 3-D space as X.-[x, Y, fle, ), i=12,....N
The correlation dimension [19] is defined as
log[C(€)] 3

i}

V= g Tel

where € denotes scale. The correlation sum, C(g), is

given as

C(e) = lzm— Z o-[%-x), @

Lhj=1
i#j

where N is the total number of points in the set; ©(x)
denotes the unit step function; and ||X X || is the dis-
tance between vectors X; and X . Generally, the correla-
tion dimension is estimated as the slope of the line that is
fitted to the data points {log(e), log[C(€)]}. In this
work, however, two new measurements are derived
directly from the correlation sum. ‘

The first of these reflects the local roughness of the‘
input image surface and is given as

R(m,n) = z C'(g, m, n) 5)

e=1

where €, is the upper limit for €, and C(g, m, n) is the
correlation sum computed within nonoverlapping subre-
gions of the input image. The second measurement quanti-
fies global image homogeneity and is computed as

=éZZ[R(m,n)—M12., . ®
where

= GX Y ROmn), ¥

and Q is the total number of subregions into which the

- image is divided. Given the above expressions, the follow-

ing statements can be made. High values of R(m, n) sig-
nify high correlation among the pixel values in the

subregion (indicating a smooth surface), while low values
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Figure 4. (a), (b) Images of fabric without and with a defect, respectively. (c)-(h) Outputs of the various modules

in the segmentation algorithm. See text for details.

of R(m,n) indicate a rough surface. Furthermore, small
values of V (i.e., surface is either mainly rough or mainly
smooth) denote a globally homogeneous image.

By applying the local roughness and global homogene-
ity measures to the output of MSWAR (specifically, the
fused detail images), one can robustly detect and localize
anomalies in the presence of texture. To illustrate this
point, consider the images in Fig. 4. The input images in
Figs. 4(a) and 4(b) are of the same fabric, but the latter
image contains a pick defect (i.e., the dark streak®. The
fused detail images are shown in Figs. 4(c) and +(d),
respectively. Comparing this pair of images with the input
pair demonstrates the utility of the previously described
preprocessing modules, that is, scale-dependent attenua-
tion of the background texture and accentuation of the
defect. Figures 4(e) and 4(f) depict the conditioned out-
puts, while the images in Figs. 4(g) and 4(h) represent
R(m, n) for each of the inputs. Note that on the one hand,
the local roughness measure for the fabric with no defects
exhibits a random pattern [Fig. 4(g)], while on the other
hand, the same measure localizes the defect as an event
with highly correlated pixels [Fig. 4(h)]. Furthermore, a
comparison of the global homogeneity measures for the
two fabrics (i.e., 58.1 for the fabric with the defect versus
1.1 for the one without) gives a clear indication of the
presence of the defect. Significant, often an order of mag-

nitude, difference between the values of  indicates the a
threshold, T, can be established to robustly detect the
presence or absence of defects. This threshold value is
selected empirically by observing typical values of V for
defect-free fabrics.

2.4. Thresholding & Blob Analysis Modules

If the computed global homogeneity measure happens
to fall below T, the input image is deemed to be defect-
free, and the segmentation is initialized with the next
image frame. If, however, one or more defects are detected
(i.e., V>T), the corresponding R(m, n) is binarized by
employing an automatic thresholding technique. The
choice of a thresholding technique is not at all crucial,
because large V ‘s indicate not only the presence of
defects, but also the fact that the values corresponding to
defects are vastly different from those corresponding to
background. So far in this work, we have employed Otsu’s
approach [20], which aims to minimize the weighted sum
of group variances. Although this approach has produced
favorable results, the reader is recommended to explore
other techniques in which the discrepancy between the
number of defect pixels and that of the background pixels
is taken into account, e.g., [21].

Following the binarization of R(m, n), the output




image undergoes connected component analysis. For this,
we have utilized one of the many widely available blob
analysis techniques, specifically, the two-pass technique
presented in [17]. This module is the gateway to feature
extraction and classification.

3. Results

The efficacy of the described segmentation algorithm
has been tested thoroughly under realistic conditions and
as a part of an on-line fabric inspection system (patent
pending). Over 3700 images of fabrics constructed with
filament as well as spun yarn, containing 26 different
types of defects were subjected to the proposed algorithm.

(d

(b) (e)

(©)

Figure 5. (a), (b), (c) Fabric images with mispick, end-out, and slub defects, respectively; with the corresponding
fused outputs in (d), (e), and (f); R(m, n) ‘s in (g), (h), and (i); and the thresholded results in (j), (k), and (1).

The overall detection rate of our approach was 89% with a
localization accuracy of less than 0.2 inches and a false
alarm rate of 2.5%. The false alarm rate is computed as the
total number of false detections divided by the total num-
ber of processed images.

It should be noted that the detection rate of the segmen-
tation algorithm for the most commonly occurring and the
most serious defects, such as mispicks, end-outs, and
slubs, was 100%; see Fig. 5 for examples.

4. Conclusions

We have presented a robust segmentation algorithm for
the detection and localization of woven fabric defects.

(2)
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This algorithm is a part of an overall vision system, which
was developed by the authors in early 1995 as the very
first on-loom fabric inspection system. The essence of the
presented segmentation algorithm is the localization of
those defects in the input images that disrupt the global
homogeneity of the background texture. To accomplish
this, a wavelet-based preprocessing module is employed
that attenuates the background texture and accentuates the
defects. Novel texture features are utilized to measure the
global homogeneity of the output images. The efficacy of
this algorithm was tested thoroughly under realistic condi-
tions with over 3700 images of fabrics, containing 26 dif-
ferent types of defects. The overall detection rate of our
approach was 89% with a localization accuracy of less
than 0.2 inches and a false alarm rate of 2.5%.
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