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ABSTRACT 

In this paper, we present the notion of cascading steer- 
able filters to improve their angular resolution. Addi- 
tionally, we illustrate that the results of such cascades 
can be steered themselves. An advantage of this ap- 
proach is that only a single, relatively small set of steer- 
able filters can be employed to achieve various angular 
resolutions. Improving angular resolution has previ- 
ously required an entirely different, larger set of filters. 

1. INTRODUCTION AND REVIEW 

Oriented filters are useful in many image processing 
and early vision tasks [l, 21. Steerable filters are one 
class of oriented filters that have received significant at- 
tention in recent literature [3-71. After the background 
information in this section, the remainder of this pa- 
per is organized as follows. In Section 2, we describe 
and demonstrate with an example how cascading ap- 
propriately steered filters can provide improved angular 
resolution. We show that these cascades can be steered 
themselves in Section 3. In Section 4, we apply steer- 
able cascades to the orientation analysis problem and 
we conclude in Section 5 with some closing comments. 

We provide a concise review of steerability, modeled 
closely on the excellent presentation of Simoncelli & 
Farid in [6] ,  but in the frequency domain. Perhaps 
the simplest example of a steerable filter is the first 
partial derivative of the Gaussian. In polar frequency 
coordinates, the horizontal and vertical derivatives are 
given by 

where and 4 indicate the radial and angular coor- 
dinates, respectively. In (l), the subscripts and su- 
perscripts of G indicate the orientation and derivative 
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order, respectively. Using trigonometric identities, it 
is easy to show that the first partial derivative at any 
orientation, G r )  , can be synthesized by 

G p ( < ,  4)  = COS(W!)(<, 4) + sin(r3)G;j2(t, 4) .  (2) 

Equation ( 2 )  embodies the principle of steerability: the 
directional derivative G(l) can be generated at any ar- 
bitrary orientation r3 by a linear combination of the ba- 
sis filters, GF) and G!j2. We refer to  the coefficients of 
this linear summation, cos(r3) and sin(e), as the steering 
functions. Since convolution is a linear operation, the 
result of convolving with an arbitrarily oriented filter 
can be computed from the results of convolving with 
only the basis filters. 

Steerability is not limited to  derivative filters - see [2] 
for a thorough exposition. We proceed considering only 
polar separable filters, for which the general steerability 
condition is given by 

Be(<, 4 )  = H ( W ( 4  - 0) 

Q 
H(<) gk (e)Bk (4 )  

k = l  

where H( . )  is the radial component, B(.)  is the an- 
gular component, gk(.) are the steering functions, and 
Bk are a fixed set of Q orientations, usually chosen so 
that Bk = ( I C  - l ) / (Qr)  for robustness [a]. The Q fil- 
ters represented by the H(C)Bk($) terms are the basis 
filters. 

We work with filters whose angular component can 
be expressed as a (finite) Fourier series in polar angle: 

M 

~ ( $ 1  = w(r)ejr$. (4) 
r=-M 

Additionally, the following two theorems will be impor- 
tant. 
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Figure 1: Ideal magnitude response of the two orienta- 
tion band, steerable filter set from the steerable pyra- 
mid. (Shaded regions indicate passbands.) 

Theorem 1. Let P be the number of nonzero coeffi- 
cients, w ( r ) ,  for  a filter H(c,q5) whose angular com- 
ponent is expandable in the form of (4). Then P is 
the minimum number of basis functions necessary to 
steer H(c,q5) by (3), i.e., Q in (3) must  be such that 
Q L P PI. 
Theorem 2. The steering condition (3) holds for  func- 
tions with angular components expandable in the f o r m  
of (4), where only P of the coefjicients w ( r )  are nonzero, 
if and only if the steering functions gk(6) are solutions 
of 

where { r l ,  . . . , r p } ,  ri E [-M, MI, indicate the indices 
of the nonzero w(r)  coefjicients. 

Theorem 1 gives the number of basis filters that are 
required to provide steerability. Theorem 2, a more 
general version of that in [2], gives the steering func- 
tions, gk(0). Although we have restricted ourselves to 
polar separable filters for brevity, the theorems above 
(and our results to follow, except as noted) hold in more 
general cases [8].  

As we are concerned with the angular components 
of steerable filters, and to limit excessive notation, we 
will refer to filters by only their angular components. 
For example, we will refer to the basis filters men- 
tioned above simply as Bk(q5), dropping the common 
radial component H(5) .  Note that Bk(q5) = B(q5 - 6,) 
from (3) can be written using (4) as 

Figure 2: Ideal magnitude responses of S,/4 and the 
cascade B1STj4. 

2. CASCADES OF STEERED FILTERS 

Previously, increasing the angular resolution of steer- 
able filters has been accomplished by increasing the 
number of basis filters. Here, however, we present a po- 
tential alternative. Consider the ideal bandpass nature 
of the two orientation band, steerable pyramid filters 
presented in [5] and illustrated in Fig. 1. A filter at 
any arbitrary rotation can by synthesized by 

Se($) = cos(B)Bi(q5) + ~in(d)B2(+). (7) 

Now consider the result of cascading B1 with the fil- 
ter S,/4 as computed by (7). The filter S,/4. and the 
(ideal) resulting cascade B1Sx/4, which is oriented at  
~ / 8 ,  are shown in Fig. 2. As evident in Fig. 2, the re- 
sulting cascade B1 ST/4 should provide improved angu- 
lar resolution in the ideal case. The dashed lines in the 
B1S,/4 portion of Fig. 2 indicate the four orientation 
bands one might produce from the four combinations 
of B1 and B2 cascaded with S,/4 and Slr14. We could 
also envision additional cascade stages to further im- 
prove angular resolution. For example, applying S-18 
to  the B ~ S , I ~  result of Fig. 2 would (ideally) produce a 
filter oriented at  r /16 with half the angular bandwidth 
of B I S , ~ ~ .  It should be evident that this cascading can 
be applied to steerable sets with an arbitrary number 
of basis filters, and extended to any number of stages. 

We illustrate these ideas with a simple example. 
We employ a two orientation band, steerable filter set 
constructed by sampling the first horizontal and verti- 
cal derivatives of the Gaussian on a 9 x 9 lattice. The 
normalized magnitude responses of B1, ST/,, and the 
cascade B1ST/4 are shown in Fig. 3, where the straight 
lines indicate the (expected) orientation. The increase 
in angular resolution of the cascade should be evident 
in Fig. 3. Note the out-of-band energy orthogonal to 
the main lobes in B1S,/4. The peak side lobe magni- 
tude is approximately 17% (i.e., -16 dB) of the peak 
in the directional pass band. Further cascade stages 
are illustrated in Fig. 4. As more levels are employed, 
it is evident that the resulting orientation begins to 
drift significantly from what is expected. The out-of- 
band energy (about -16 dB) is also still present. In the 
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Figure 3: Normalized magnitude responses for two 
stage cascade. (Shown in inverse scale - i.e., black in- 
dicates 1 and white indicates 0.) 

next section, we show how the cascades can be steered, 
preventing the orientation drift and, furthermore, elim- 
inating the out-of-band energy. 

3. STEERABILITY OF CASCADES 

We mentioned in the previous section that the two ori- 
entation bands of Fig. 1 could be split into four bands 
using the four possible combinations of B1 or B2 cas- 
caded with S,,, or Sa/4. Recalling (7), however, Se 
cascaded with B1 or BZ can be written as one of the 
following: 

Bise = cos(B)BIB1 + sin(B)B1B2 ( 8 4  
BzSe = COS(B)B~B~ + sin(B)BaBz. (8b) 

Although we have suggested using the four filters given 
by B1ST/4, B I S - ~ ,  B2%/4, and B2Sa/4, (8) illus- 
trates that these four are composed of linear combi- 
nations of only three unique terms: BlB1, B1B2, and 
B2Bz. In this scenario, we would like to determine if 
we can construct a three band, steerable,basis set from 
these three unique terms. We now address this problem 
more generally. 

Suppose we have a basis set of m filters, each of 
which can be written as in (6), where only m of the 
Fourier series coefficients are nonzero. We denote the 
number of unique filters that result from the n stage 
cascades of these m filters as P(m,n).  For our m = 2 
example, P(2,n) = n + 1 and the unique terms are 
given by all possible (Bl)" (B2>l2 such that 11 + 12 = n 
with 11,12 2 0. In the general case, 

and the unique terms are given by all the possible 

(Bl)ll (B2)12 . . . (B,)lm 

such that Czlli = n, where li 2 0. With this nota- 
tion, we make the following proposition. 

C3=CZS-R/8 c4=C3s-3~/16 c5=c4s-7n/32 

(line at d16)  (line at d 3 2 )  (line at d64) 

Figure 4: Normalized magnitude responses for further 
cascades. (Coordinate scaling is the same as in Fig. 3 
for consistency.) 

Proposition 1. A n y  filter in the fo rm of (10) has ut 
most P(m, n)  nonzero coeficients in its (angulur) Four- 
ier series expansion. 

This can be shown by using (6) to express each of 
the Bi, for i = 1, .  . . ,m,  as 

m 

~ ~ ( 4 )  = wi(rp)ejrp4 (11) 
p= 1 

where w i ( r )  = w(r)e- je i r  and { T I , .  . . , r m }  indicate the 
indices of the (possibly) nonzero coefficients. There- 
fore, a filter in the form of (10) can be considered an 
m term multinomial of degree n, where the m terms are 
given by ejrp4 for p = 1,. . . , m. The maximum number 
of (monomial) terms in an m term multinomial of de- 
gree n is the same as the number of m term monomials 
of degree n, i.e., (lo), and this number is P(m,n) as 
given by (9), hence Proposition 1. 

Recalling Theorem 1, Proposition 1 implies that ev- 
ery filter in the form of (lo), which results from the n 
stage cascade of the m basis filters, is steerable with 
at most P(m,n)  basis filters. We would like to know, 
however, if the P(m,  n) different filters that result from 
our cascades can be used as a basis set to steer them- 
selves. 

We begin with a basis set B1, . . . , B,, where m is 
minimal to satisfy the steering condition. With m and 
n fixed, let P = P(ml n). We will let Ck(q5) denote the 
kth unique term of the cascade for k = 1, .  . . , P. Each 
c k  will take the form of (lo), where each of those Bk 
can be written as in (6). The Fourier series expansion 
of c k ( $ )  can then be written as 

n M  

Ck(4) = ak(r)ejr ' ,  (12) 
r=-nM 

where u k ( r )  is nonzero for at most P of the 2nM + 1 
indices by Proposition 1. Let the set of r where possibly 
u k ( r )  # 0 be given by { T I , .  . . , r p } .  Note that this set 
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BlBl n=3 n=4 n=5 
(line at d 1 6 )  (line at d 3 2 )  (line at d64) 

Figure 5: Normalized magnitude response of the three 
unique cascade terms for the two stage (n  = 2) cascade 
of two filter (m = 2) basis set. Notice that the cross 
term B1 B2 does not have a predominant orientation. 

Figure 6:  Normalized magnitude response for steered 
cascade with Fig. 4. 

is the same for all k. Now let Cl($) = [B1($)ln. As 
noted in Section 1, B1 is traditionally oriented at zero 
radians, like cos($) for example. With this condition, 
it should be evident that Cl = (Bl)" is oriented at zero 
radians as well, but with a narrower bandwidth than 
B1. We would like to use the set of c k  for k = 1 , .  . . , P 
to steer Cl($) to any arbitrary angle 8. In other words, 
we would like to find, if possible, the set of steering 
functions gk(8) for k = 1 , .  . . , P to solve 

P 

cl($ - 6 )  = x g k ( o ) c k ( r b ) .  (13) 
k=l 

If such gk(8) can be found, then our cascades can indeed 
be used to steer themselves. Employing (12), we can 
show the following [8]. 

Proposition 2. The cascade steering condition given 
by  (13) holds forfilters in the form of (12)) where only 
P of the coefficients U k ( T )  are nonzero, if and only i f  
the steering functions satisfy 

Note that, unlike the original basis filters, where 
usually Bi($) = B1($ - &), the cascade filters do not 
necessarily have a predominant orientation. In other 
words, c k ( $ )  # cl($ - 8,) in general. Consider, for 
example, the two stage cascades of a two band basis set 
as shown in Fig. 5. The squared terms obviously have 
a predominant orientation, but notice that the cross 
term BIB2 does not. 

Finally, we note that the Fourier series coefficients 
of the cascade filters, arc(?-) in (12), can be computed 
easily by discrete convolution of the Fourier series co- 
efficients of the original basis filters, W L ( T )  in (4). In 
other words, 

arc(.) = [ w ~ ( T ) ] * ' ~  * [w~(T)]*"  * . . . * [w,(T)]*'~ (15) 

for k = 1 , .  . . , P(m, n),  where the mapping between IC 
and the set of li is isomorphic, and where [wi(r)]*li indi- 
cates wi(r) convolved with itself li times. We note that 
this approach works only for polar separable filters. 

As an example, we steer cascades constructed using 
the 9 x 9 first derivative of Gaussian filters used for 
the examples of Section 2. The magnitude response of 
the cascade stages for n = 3 , 4 , 5  are shown in Fig. 6. 
They have been steered to the indicated angles for com- 
parison with Fig. 4. Note that there is no out-of-band 
energy or orientation drift in the steered cascade filters. 

4. APPLICATIONS 

We have applied steerable filter cascades to the orien- 
tation analysis problem in a manner similar to  [2]. As 
both even and odd parity filters are used in [2], we 
employ two successive cascade stages for orientation 
analysis. We begin with two 5 x 5 filters computed 
by sampling the first derivatives of the Gaussian. We 

where { T I ,  . . . , r p }  indicate the indices of the (possibly) 
nonzero coefficients ab(?-) for  k = 1 , .  . . , P.  

~~ 

Proposition 2 is just a corollary of Theorem 2. Ac- 
cording to Proposition 1, the matrix on the left hand 
side of (14) always has at least as many columns as 
rows, lending hope that our cascades can indeed steer 
themselves. In all the cases we have considered in our 
research, (14) has been solvable. 

first use the responses from the two original filters and 
their two stage cascades. We compute the predominant 
orientation and oriented energy, as in [2], and refer to 
them as { e l ,  e l }  and {&, e2} for the original filters and 
two stage cascades, respectively. (The subscripts here 
are used to indicate the number of stages.) The final 
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Fmm Freeman & Adelson 1991 (seven 9x9 filters). 

Using two stage cascades of two 5x5 filters. 
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Figure 7: Oriented energy for one pixel in a test image. 

predominant orientation is taken to be either 81 or 82, 
according to which of el or e2 is larger (after normaliza- 
tion). For improved angular resolution, we also employ 
two and three stage cascades in the same manner. 

Our one-two and two-three stage analyses were per- 
formed on a 170 x 170 synthetic test image and com- 
pared with the method from [2]. The difference be- 
tween the orientation from our methods and that from 
[2] was computed at pixels where the oriented energy 
exceeded 10% of its peak value and the mean abso- 
lute difference was calculated. For the one-two stage 
cascade, this difference was 1.9” and for the two-three 
stage cascade the difference was 2.6”. The oriented en- 
ergy from all three methods is plotted against angle in 
Fig. 7 for a pixel on a structure oriented at approxi- 
mately 10”. Note the improved angular resolution in 
the two-three stage cascade indicated by the narrower 
bandwidth. A similar experiment was performed using 
the 512 x 512 well known “lena” image. In this case, the 
mean absolute difference between our two-three stage 
cascade analysis and the method of [2] was 4.4”. 

These results indicate that the orientations com- 
puted by our method(s) are nearly identical to those 
computed by the method from [2]. We, however, begin 
with only two 5 x 5 filters, where [2] uses seven 9 x 9 
filters. Practically, of course, the amount of computa- 
tion is about the same considering the cascading, but 
we feel that this at least demonstrates the potential of 
such cascades. 

Finally, we mention that cascades within the steer- 
able pyramid [7] have also been investigated and found 
to have some promise [8]. A brief discussion of this 

topic should appear in a future endeavor. 

5. CONCLUSIONS 

In this paper, we introduced steerable filter cascades. 
It was demonstrated that such cascades can provide 
improved angular resolution and can be steered them- 
selves. Cascades were applied to the orientation anal- 
ysis problem and were shown to perform as well as 
a common approach, but beginning with fewer filters. 
Additionally it was mentioned , but not discussed, that 
cascades can be used within the steerable pyramid. 
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