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Abstract

When estimating the dense motion field of a video se-
quence, if little is known or assumed about the content, a
limited constraint approach such as optical flow must be
used. Since optical flow algorithms generally use a small
spatial area in the determination of each motion vector, the
resulting motion field can be noisy, particularly if the in-
put video sequence is noisy. If the moving subject is known
to be a face, then we may use that constraint to improve
the motion field results. This paper describes a method for
deriving dense motion field data using a face tracking ap-
proach. A face model is manually initialized to fit a face at
the beginning of the input sequence. Then a Kalman filter-
ing approach is used to track the face movements and suc-
cessively fit the face model to the face in each frame. The
2D displacement vectors are calculated from the projection
of the facial model, which is allowed to move in 3D space
and may have a 3D shape. We have experimented with pla-
nar, cylindrical, and Candide face models. The resulting
motion field is used in multiple frame restoration of a face
in noisy video.

1. Introduction

The motivation for this work is to perform video restora-
tion in forensic applications. Often in surveillance video,
it is necessary to remove noise from input video. This is
particularly the case for video involving faces, because it
is often necessary to improve the quality of an image of a
perpetrator to determine suspects.

Frame averaging is a simple and effective tool for re-
ducing noise in video; however, when motion is present it
will cause blurring due to the misregistration of moving ob-
jects. Motion compensation of individual frames to register
an object across frames greatly reduces blurring caused by

frame averaging. Unfortunately, a major problem with mo-
tion compensation of noisy video is that the quality of the
motion estimation is affected by the noisy input images.

In this paper, we are able to accurately and robustly cal-
culate motion data of a moving face from noisy video by us-
ing a model-based approach. We present a method for mo-
tion estimation that uses facial feature tracking and a face
surface model to robustly and accurately estimate the actual
motion data. Once the motion data are obtained, the video
frames are warped so that they are registered. Lastly, frame
averaging can be performed to fuse frames to produce a sin-
gle image with reduced noise.

2. Our Approach

2.1 Overview

This model-based approach takes advantage of the fact
that we are interested solely in the motion estimation of a
face. Five rectangular facial regions are tracked using block
matching. These rectangular regions are shown in Figure 1.
These regions are areas that contain a large amount of infor-
mation. This makes the block matching very robust to noise
since a large number of pixels are used for a small num-
ber of measurements, and the particular regions are very
descriptive.

The spatial coordinates of the centers of the feature rect-
angles are used as the observations in an Extended Kalman
Filter (EKF) [4] that tracks the position and orientation of
the feature rectangles as a group in 3D space. The result-
ing position and orientation data can be used to control any
wireframe model. An example is the Candide wireframe
face model [1], which is shown in Figure 2. The wireframe
model is used to generate a motion displacement vector for
each pixel in the image. In this work, displacements are
generated from one frame to its following frame. This al-



Figure 1. Facial feature rectangles

lows us to continually average frames as we move forward
in time through the video.

The face tracking approach described here is not in-
tended for continual automatic face tracking. This algo-
rithm is aimed at processing a small number of frames (on
the order of 10-20) with user interaction. Generally, foren-
sic video restoration is performed offline, and only a small
number of frames are available. Steps to make this algo-
rithm more amenable to continuous tracking might include
warping the rectangles with changes in pose and using the
EKF and facial model to recover from block-matching er-
rors.

Figure 2. Candide model used

2.2 Facial feature block matching

A graphical user interface is used to initialize the facial
feature blocks. The user manually alters the position, orien-
tation, and scale of the feature rectangles so that they cor-
rectly cover the features of interest: both eyes, the nose, and

both corners of the mouth.
Since the feature rectangles are allowed to move in 3D

space, they will not necessarily project onto the image space
as rectangles. We are assuming orthographic projection
within the facial model, so the rectangles become paral-
lelograms. We find the smallest rectangles in the the im-
age space which completely contain these parallelograms.
Those rectangles are used for the block matching within the
images. Since for our purposes, the number of frames is
likely to be small, and we are assuming a small change in
pose, the grayscale information in the original rectangles
serve as the references for matching in all frames. The
miniumum Mean Absolute Difference (MAD) criterion [6]
is used as a difference measure. That is we minimize

MAD(q, r) =
1

MN

∑
(m,n)∈B

|f(m + q, n + r, k) − f(m,n, 1)| (1)

within each search window, wheref are video frames in-
dexed by the integer time indexk, mandn are integer spatial
indices,q andr are integer displacments,B is the rectangu-
lar region being considered as a match, andf(m,n, 1) is
the first frame in the sequence. The search region forq and
r is limited to a rectangular search region. The extent of
that rectangular search region is a function of the preceding
frame’s block location, so the search region changes as the
matched blocks move in space and time.

2.3 Extended Kalman Filter

The Extended Kalman Filter tracks the following state
variables:

s =
[

x y q0 q1 q2 q3

]T
, (2)

wherex andy are the spatial coordinates of the facial model,
and the remaining variables define the 3D orientation of the
Candide model using quaternions [4]. Note that while the
model is allowed to change orientation in 3D space, thez
dimension is otherwise ignored. Also, scaling is fixed (i.e.
we are assuming orthographic projection). Originally, scal-
ing was considered, but it made the algorithm very unstable.
Therefore, we set the scale during initialization, and assume
that the face moves very little in thez direction during the
sequence.

The equations used are [6]:
the state prediction equation,

ŝb(k) = Φ(k, k − 1)̂sa(k − 1), (3)

the error covariance prediction equation,

Pb(k) = Φ(k, k − 1)Pa(k − 1)Φ(k, k − 1)T + Q(k), (4)
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the Kalman gain equation,

G(k) = Pb(k)HT (k){H(k)Pb(k)HT (k) + R(k)}−1, (5)

the state update equation,

ŝa(k) = ŝb(k) + G(k)[w(k) − h(̂sb(k))], (6)

and the error covariance update equation,

Pa(k) = Pb(k) − G(k)H(k)Pb(k), (7)

wheres is the state vector,
w is the observation vector,
h is the non-linear system observation function,
R is the observation noise covariance matrix,
Q is the state noise covariance matrix,
P is the state estimation error covariance matrix,
G is the Kalman gain matrix,
Φ is the state update matrix,
and H is the observation matrix of the linearized system
obtained by

H(k) =
h(s(h))
s(k)

∣∣∣∣
s=ŝb(k)

. (8)

The subscripts “b” and “a” denote before and after the up-
date respectively.Φ is set to the identity matrix to assume
constant position. The initial value ofs is set according to
the manual initialization of the facial model.w is a ten-
element vector containing thex andy coordinates of the fa-
cial feature tracking rectangles. That is

w =
[

x1 y1 x2 y2 · · · x5 y5

]T
, (9)

wherexn andyn, n = 1, 2, . . . are the face feature rectangle
centers.

2.4 Generation of Dense Motion Field

The facial surface model is used to convert face tracking
information into a dense motion field. This is the inverse of
what was done in work by Basu et al. [2] in which they use
an optical flow algorithm to calculate a dense motion field,
and then they iterate to determine the head position and ori-
entation that could enable a 3D facial model to produce the
given motion field. The benefit to their approach is that face
tracking can be achieved without dependence on the pres-
ence of all facial features. However, here we assume that
the facial features will be present, and we are using them
as a robust way to determine the position and orientation of
the head. Thus we are able to create a dense motion field
even though noise is present.

The generation of the dense motion field from the face
surface model assumes an orthographic projection. It is rea-
sonable to assume that within the limited depth change of

the face that there is little variation in scaling. The motion
field that we are seeking describes the displacement from
one frame to the next. That is

f(m,n, k) = f(m − u(m,n, k), n − v(m,n, k), k − 1),
(10)

whereu andv are real values containing the horizontal and
vertical motion displacements respectively. From the above
equation, we see that for a given pixel, the motion vector de-
scribes the location from where that pixel originated in the
previous frame. The benefit of this form will be described
below.

The facial surface model can be any 3D shape repre-
sented by a wireframe mesh of triangular regions. For each
frame, we calculate the coordinates of each of the vertices
of the facial model wireframe. For each pixel of the given
frame we determine where it projects onto the wireframe
model using orthographic projection. If the given pixel does
not fall on the model, then we assume the motion for that
pixel is zero. If it projects onto a triangle in the mesh, we
use that triangle’s plane and the knownx andy location of
the pixels to determine thez or depth component. If the
pixel projects to multiple triangles, as can happen with a 3D
structure, the projection point closest to the camera is used.
Once thez component is obtained, we find the 3D position
of the point in the previous frame, and the difference is the
3D motion vector. Since we are only concerned with the 2D
motion vector, we perform orthographic projection which is
simply removing thez component of the 2D motion vector.

2.5 Motion-compensated frame averaging

The motion compensation of frames is achieved by the
backward warping [3] of each pixel. Because of how the
motion vectors are defined in (10), each pixel has a single
motion vector whose head is at that pixel and whose tail cor-
responds to a location in the previous frame. The tail of the
motion vector does not necessarily correspond to an integer
pixel location; however, a source pixel is easily obtained by
bilinear interpolation of the four nearest pixels.

At each frame, we calculate the average of the current
frame and all preceding frames of interest. This is calcu-
lated recursively by continually warping the average image
one frame forward in time. That is we recursively calculate

f̂(m,n, k) =
1
k

f(m,n, k)

+
k − 1

k
f̂(m − u(m,n, k), n − v(m,n, k), k − 1), (11)

wheref̂ is the averaged frame.
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3. Experiments and Results

We tested our approach for motion-compensated frame
averaging on a sequence of 16 images. We also used an im-
plementation of an optical flow algorithm for creating mo-
tion estimation data. The algorithm was designed by Black
[3], and it is a robust extension to the Horn-Schunck [5]
optical flow algorithm. We will refer to it hereafter as the
robust optical flow algorithm.

We artificially add Gaussian noise to the images to
achieve a signal-to-noise ratio of 2.1 dB. The first image in
the noise sequence is shown in Figure 3, and the last image
is in Figure 4. Although the robust optical flow algorithm
has a spatial smoothness constraint, it has trouble with the
noise in the image sequence. The frame-averaged result ob-
tained from using the robust optical flow algorithm is shown
in Figure 5. As one can see, the noise in the video sequence
has caused the motion field generated from the robust op-
tical algorithm to be noisy. Thus the fused result gives the
impression of a melted face.

Figure 3. First frame of original sequence with
noise added

We used three different face surface models in our
model-based approach. Those are the Candide model, a
cylindrical model, and a planar model. The Candide and
cylindrical models are plotted together in Figure 6. The
frame-averaging results for the different models are shown
in Figures 7, 8, and 9.

The model-based approach is able to perform well and is
able to remove noise through motion-compensated frame
averaging. It appears that the different models perform
roughly equally. Remember that all pixels not on the model
are not motion-compensated. Therefore, the shoulders are
blurred. Also, the models have different extents. For exam-
ple, the models vary in how much hair is within the model.
Also note that the models leave a trail. This is not a prob-

Figure 4. Last frame of original sequence with
noise added

Figure 5. Frame fusion using robust optical
flow algorithm

lem, since we are only concerned with the facial region.

4. Conclusions

Here we have shown that a 3-D model can be used to
add robustness to the optical flow calculations for a face in a
video sequence. Additionally, the resulting optical flow can
be used to fuse multiple frames to create a single frame re-
stored face. The tracking is based on facial features that are
easily identified and have significant edge information. The
3-D model enables us to convert the facial feature tracking
into realistic optical flow data for the entire face. Experi-
mental results have shown that in noisy video data, this ap-
proach is more accurate that using a less-constrained optical
flow algorithm
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Figure 6. Relationship of cylindrical and Can-
dide models used

Figure 7. Frame fusion using Candide 3D
model
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