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ABSTRACT

This paper describes the application of a statistical-based deformable model algorithm to the segmentation of kidneys in x-ray
computed tomography (CT) images of laboratory mice. This segmentation algorithm has been developed as the crucial first
step in a process to automatically screen mice for genetically-induced polycystic kidney disease (PKD). The algorithm is
based on active shape models (ASMs) initially developed by Cootes, et. al. Once the segmentation is complete, texture mea-
surements are applied within kidney boundaries to detect the presence of PKD. The challenges associated with the segmenta-
tion of mouse kidneys (non-rigid organs) are presented, and the motivation for using ASMs in this application is discussed.
Also, improvements were made to published ASM methods that may be generally helpful in other segmentation applications.
In 15 of the 18 cases tested, the mouse kidneys and spine were detected with only minor errors in boundary position. In the
remaining three cases, small parts of the kidneys were missed and/or some extra abdominal tissue was inadvertently included
by the boundary. In all 18 cases, however, the kidneys were successfully detected at a level where PKD could be automatically
screened for using mean-of-local-variance (MOLV) texture measurements.
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1. INTRODUCTION

The Oak Ridge National Laboratory (ORNL) has a world class Mammalian Genetics Research Facility that houses more than
70,000 mice representing about 400 mutant lines. Mutagenesis experiments are performed on the mice, and it is important to
then determine the physical manifestations (phenotypes) of these induced mutations. These phenotypes are often difficult to
find, especially when only a few researchers are available to screen a large number of mice. A large percentage of these pheno-
types are expressed as internal abnormalities that cannot be seen without sacrificing the animal. Examples of these phenotypes
include skeletal deformities (e.g. scoliosis) and deformed or diseased organs (e.g. polycystic kidney disease). A Laboratory-
Directed Research and Development (LDRD) program was recently completed at ORNL with the objective of accelerating the
process of screening these mice for internal abnormalities. A new high-resolution, x-ray CT instrument called MicroCAT has
been developed as a part of this new program1.

The MicroCAT system generates large volumetric data sets of the mouse anatomy that must be analyzed to determine if a par-
ticular phenotype is present in a given subject. To perform phenotypic screening on large numbers of mice, an automated
approach is needed to identify potential anatomic mutations within the animals. This paper describes the application of a statis-
tical-based deformable model algorithm to the segmentation of kidneys in x-ray CT images of laboratory mice. This segmen-
tation algorithm has been developed as the crucial first step in a process to automatically screen mice for genetically-induced
PKD. The algorithm is based on ASM developed by Cootes, et. al2,3. Once the segmentation is complete, MOLV texture mea-
surements are applied within kidney boundaries to detect the presence of PKD. 
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This paper first describes the challenges associated with the segmentation of mouse kidneys (and non-rigid organs, in general).
Next, the concept behind deformable model-based segmentation algorithms is presented. It then goes on to present the motiva-
tion for using ASMs in this application. Also, the paper outlines the general theory behind ASMs and describes improvements
that were made to published ASM methods that may be generally helpful in other segmentation applications. Finally, the
results of a PKD screening experiment are presented.

2. MEDICAL IMAGING AND DEFORMABLE MODELS

The field of medical imaging is one where anatomical structures may be somewhat predictable in terms of appearance (e.g.
organ shape and location), but variations are always encountered from subject-to-subject and within the same subject over
time. Also, there are areas of the anatomy (e.g. the abdominal cavity) where the appearance, location, and background of struc-
tures are quite unpredictable, making the segmentation task even more intractable. The difficulties created by these variations
in the organ and its background are, at least in part, why semi-rigid organ segmentation is not as well-studied as rigid organ (or
rigidly-enclosed organ, i.e., brain) segmentation. Also, in many cases of medical image analysis, there is an abundance of a
priori information available in the form of the patient’s own historical records as well as imagery from a potentially large pop-
ulation of other patients that could be used for algorithm training. In summary, a useful medical image segmentation algorithm
should be capable of handling problems with the following characteristics:

• semi-rigid objects,
• complex backgrounds,
• faint, obscured, or partially missing object boundaries, and
• available a priori information on object appearance.

As an example of a medical imaging application with these characteristics, consider the problem of detecting kidneys within
the abdomen of laboratory mice. A set of kidney cross-sectional images from 12 different mice is shown in Fig. 1. These
images were acquired using the aforementioned MicroCAT x-ray CT system. Note the variability in shape, intensity, position,
pose, and contrast of the kidneys (relative to their backgrounds) among the 12 images. Also note the varying complexities in
the background structure. In particular, note the very faint boundaries around many of the kidneys (e.g. second row, middle
image). One particular class of segmentation algorithms that is adept at handling these types of variabilities is deformable
models, and they are briefly described next.

2.1. Deformable Models

Deformable models belong to a class of algorithms that typically use a boundary representation (2D deformable contour) or a
surface representation (3D deformable surface) of an object for segmentation purposes. The deformable contour is typically
initialized by placing a contour on the image, and then its position and shape are iteratively adjusted to best fit the object’s
boundary. The characteristics of the contour (e.g. local roughness, overall shape) depend on a set of parameters that is adjusted
and tuned via an optimization process to best fit the information about the object as represented by the image data. These
parameters that control the general form of the resultant contour are typically referred to as internal constraints. The image
data generate forces, referred to as external forces, that attract or repel the model. In their foundational work on active con-
tours, or snakes, Kass et. al4 formulated the internal constraints and external forces as internal and external energy terms in an
objective function that, when minimized, corresponds to the best fit of the model to the image data.

2.2. Active Shape Models

Within the class of deformable models, ASM is one of the algorithms best-suited for applications where a priori information is
available for incorporation into the segmentation process. ASM was first introduced by Cootes, et. al2, and more recent
research on ASM-based statistical deformable models has been presented by Wang, et. al5, Kervrann et. al6, and Duta et. al7.
ASM uses a training set of images that have been manually segmented via the placement of a collection of landmark points
(LPs) along the boundary of an object. Information is extracted from this training data to create two distinct models, a shape-
model (SM) and a gray-level model (GLM), that together constitute the overall model in this hybrid segmentation approach.
SM is created using the spatial location and the interrelationship of LPs across the training images, while GLM is created using



Figure 1. X-ray CT abdominal cross-sections of 12 different mice. The white structure at the top of each image is the spinal col-
umn. The two elliptical shaped structures to the lower-left and right of the spinal column are the kidneys. The black spots in the 
abdomen are air pockets and the distributed white abdominal structure (especially the first 5 images) is excess contrast agent.



local gray-scale gradient characteristics of sampled profiles within the training images. ASM is a multiresolution search tech-
nique, so GLMs and SMs are created during training (and applied during testing) at each of the predefined resolutions.

To put the optimization of ASM in the general context of deformable contours described earlier, SM imposes the internal
shape constraints on the final solution, and GLM is influenced by the external forces created by the image data. ASM is initial-
ized by placing an “average” contour on a test image. The shape and position of this initial contour are then iteratively updated
to optimize their fit to the underlying image information. As in other deformable contour algorithms, the optimization of ASM
achieves a compromise between the internal constraints imposed by SM, and the external forces influencing GLM. An itera-
tive scheme is employed whereby GLM finds a new set of LPs based on the best fit to the image data and passes that LP set to
SM. SM then constrains the shape of those LPs to fall within the range of allowable shapes as defined by the training set, and
passes this constrained set of LPs back to GLM. This process repeats until the constrained set of LPs generated by SM stops
changing. ASM is an excellent starting point to solve the problem of screening for PKD in laboratory mice. ASM does make
substantial use of a priori information through the creation of the GLM and SM components. The knowledge built into these
components during the training process allows ASM to segment objects with faint and/or missing boundaries with remarkable
accuracy. Another important advantage that the ASM approach has over other deformable model algorithms is its intrinsic
ability to simultaneously handle multiple boundaries, both open and closed. 

3. IMPROVED STATISTICAL SHAPE MODEL

Although an excellent starting point for the problem at hand, ASM does suffer from shortcomings that had to be solved before
it could be effective in this fully automated screening application. During the ASM implementation phase, two improvements
were made to the published algorithm that positively affected the performance of both the SM and GLM components of ASM.
First, noting that ASM is a multi-resolution technique, resolution-dependence was built into the SM to provide increased shape
constraints at lower image resolutions, and more shape flexibility at higher resolutions. Second, GLM was modified to allow
incorporation of both derivative and absolute-intensity information while updating the ASM boundary positions. This section
describes the two extensions that were made to the original ASM formulation. 

3.1. Resolution-Dependent Shape Model

The first change in the ASM approach was made to the SM constraint used to control the final boundary shape. The SM con-
straint given by3

 , (1)

is applied to the final shape parameter vector, b, to constrain shapes that vary significantly from those in the training set. The
variable λi is the ith eigenvalue of the shape parameter covariance matrix generated by the training samples. The challenge is to
select a value of s (the number of standard deviations away from the mean that each shape parameter is allowed to vary) that is
small enough to keep the final shape within the bounds defined by the training set, yet large enough to allow the boundary to
deform to fit the semi-rigid object in the image.

Typically, the SM shape constraint parameter, s, is held constant for each resolution of the multiresolution search. It was dis-
covered that this can lead to undesirable segmentation results, especially in the low-resolution images. Because the pixels are
relatively large in the low-resolution images, an error in the GLM fit of only a pixel or two can result in a large variation in
shape. As an example, see the images in the left-hand column of Fig. 2. The GLM has a difficult time with the low-resolution
image because of some competing edges below the right kidney. Note how the shape is deformed (right kidney larger and
lower than the left), and this error propagates through the mid- and full-resolution images. The final result (bottom-left, Fig. 2)
has missed the right kidney as well as the spine. 

To prevent this significant shape deformation at low-resolution, a resolution-dependent scaling term, r, was added to the orig-
inal SM equation, Eqn. (1), as follows

, , (2)

s λi– bi s λi≤ ≤ i∀ 1 … t, ,=

rs λi– bi rs λi≤ ≤ i∀ 1 … t, ,=



Figure 2. Example of multiresolution ASM search results with standard, resolution-independent shape constraint 
(left column) and with resolution-dependent shape constraint (right column). Images are 1/4-resolution (top), 1/2-
resolution (middle), and full-resolution (bottom).



where r is equal to the image resolution (e.g. 0.25, 0.5, or 1.0 for Fig. 2). This tightens the constraint on the shape at low reso-
lution, and leads to the results shown in the right-hand column of Fig. 2. This same approach has also been applied with suc-
cessful results to the ellipsoid-constraint3 as follows

, (3)

where Mt is the Mahalanobis distance threshold from the current shape estimate to the mean shape and t is the number of
parameters in the shape vector, b. Because of the inherent instability of GLM at low resolution, a more strict shape constraint
(box-constraint, Eqn. (2), or ellipsoid-constraint, Eqn. (3)) leads to better overall segmentation results.

3.2. Extended GLM

One of the difficulties in many medical image segmentation tasks is the possibility of a complex background. This complica-
tion is especially problematic when detecting structures in the abdomen of the subject because of the variability in abdominal
structure (see Fig. 1). Such a background can in many cases generate spurious edge information that will confound most seg-
mentation techniques, including ASM. Because the GLM component relies on gradient profile information, spurious edges
can generate multiple possible matches, and, hence the possibility of an erroneous boundary position. If the shape of this erro-
neous boundary happens to fall within the acceptable global shape constraints as indicated by the training set, SM has no
chance of correcting the erroneous decision. This shortfall can be attributed to at least one problem with the ASM approach: a
reliance on only image gradient information during GLM optimization. Absolute intensity information from the image has
also shown to valuable (along with gradient information) when attempting to locate the object boundaries. 

To provide a means of encompassing both gradient and absolute intensity information into GLM, an additional profile is cap-
tured during GLM training. This second profile is also composed of sampled intensity values along the normal line to the LP,
but differs from the original profile in two important ways. First the absolute intensities (not the derivatives) are used when
building the GLM, and second, the image is only sampled on the inside of the object boundary. The reason for this is that in
many segmentation applications, including the ones presented here, the object has a more predictable appearance than its back-
ground. Hence, the gray-level appearance of the object (excluding the background) can be effectively modeled by sampling
only the interior of the object’s boundary. It should be noted that Cootes et. al have published work on active appearance mod-
els (AAMs)8 that incorporate absolute gray-level intensities of objects in a quite different manner. The AAM actually uses the
values of all pixel intensity values within an object during training, not just profiles. Also, the AAM only uses gray-level infor-
mation, not a combination of gray-level and derivative information as presented here.

The GLM objective function, , was modified to include this new information in the new GLM objective function

, (4)

where α and β are constants (range 0 to 1) that determine the relative contribution of the derivative- and intensity-model terms,
 is the gradient profile,  is the new absolute intensity profile, and ,  are Mahalanobis distances defined as: 

, (5)

. (6)

In these equations,  and  are the average gradient and absolute intensity profiles for a given LP across the training set,
and ,  are the covariance matrices for the gradient and absolute intensity profiles, respectively. An example of an
improved result using this updated GLM is shown in Fig. 3. The spurious edge generated by the small pocket of contrast agent
near the right kidney pulled the final boundary away from the true kidney boundary (segmentation result on left). This problem
was corrected using the enhanced GLM (segmentation result on right).
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4. SCREENING RESULTS

Because ASM is a statistical-based, deformable shape-model, it requires a training set to incorporate shape and gray-level
information about the object(s) of interest. To build a training set, a collection of 16 axial CT images of healthy mouse kidneys
were captured using the micro-CT scanner at ORNL. The kidneys and spine were then manually segmented in each of the 16
images by placing a collection of landmark points on the spine- and kidney-borders. The enhanced ASM described in the pre-
vious section was trained and applied to each of the 16 images for the purpose of segmenting both kidneys and the spine of the
mouse. Because of the flexibility of ASM to handle multiple boundaries, both open and closed, the spine (an open boundary)
was added to the two kidneys (closed boundaries) to serve as an anchor point. Using a hold-one-out approach, the accuracy of
segmentation was measured by comparing the ASM segmentation result to the corresponding manually-segmented image in
the training set. Also, the shape-model was applied to two additional PKD images. For all 18 kidney images, an MOLV texture
measurement was applied within the kidney boundaries to screen for the presence of PKD. Some of the segmentation results
are shown in Fig. 4. 

In 15 of the 18 cases, the mouse kidneys and spine were completely detected with only a few minor errors in boundary posi-
tion. In the remaining three cases, small parts of the kidneys were missed and/or some extra abdominal tissue was inadvert-
ently included by the shape-model. In all 18 cases, the kidneys were successfully detected at a level where PKD could be
automatically screened for using the aforementioned texture measurement. In all 18 cases the presence (or absence) of PKD

Figure 3. An example of improved segmentation using original GLM formulation (left) and extended GLM (right). Note the 
exclusion of the small spot of contrast agent next to the right kidney.

contrast agent



Figure 4. ASM results on three mouse kidney CT images. The images on the left are the initial ASM position, 
and the images on the right show the final position of the ASM after convergence.



was correctly determined. The texture measurements for 4 of the 18 tested images (two normal plus two PKD) are shown in
Table 1. The images from which these four texture measurements were extracted are shown in Fig. 5.   

Table 1: Representative MOLV Kidney Texture Measurements

Normal Subject # Texture Left Texture Right

1 28 38

2 30 34

PKD Subject # Texture Left Texture Right

1 104 215

2 65 131

Figure 5. Examples of two healthy kidney segmentations (rows 1 & 2) and two PKD segmentations (rows 3 & 
4). The original images are on the left, and the MOLV texture images are on the right.



5. CONCLUSIONS AND FUTURE WORK

The enhanced ASM method presented in this paper has been a very effective tool for segmenting the spine and kidneys in x-
ray CT images of mice. In the presence of missing and/or broken edge information, this approach effectively uses the a priori
shape and gray-level data gathered from the training set to segment the spine and kidneys. Even in the cases where a kidney
was partially missed, enough of the kidney was detected to allow automatic screening for PKD. Although good performance
was obtained using the enhanced ASM approach presented here, there are opportunities for further improvement.

Recall that the original ASM approach separately optimizes the SM and the GLM components of the ASM. To summarize,
GLM searches the image gradient profiles and updates the LP positions with no regard as to how well they will fit the global
constraints imposed by SM. Similarly, SM fits a new (model-generated) set of LPs to the GLM-suggested LPs with no regard
as to how this new set matches the gradient profile information contained in the GLM. A reformulation of the ASM optimiza-
tion approach is needed that uses the gray-level and global shape information captured in the training set in a more robust and
efficient way that simultaneously considers the effects of both during the deformation process.

The lack of interaction between the GLM and SM creates another unfortunate situation in that no confidence measure is avail-
able that approximates how well the ASM segmentation algorithm has performed on any given image. In some fully auto-
mated applications, this renders the ASM ineffective. The previously mentioned reformulation of the optimization scheme
should also provide a means to generate a performance confidence metric that will allow the use of this new statistical-based
deformable shape model in a fully automated application.
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