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Abstract

The concept of content-based image compression (CBIC) has far reaching effects in the areas
of archiving and telecommunications. The purpose of this paper is to present some pilot study
results from the application of CBIC to mammography. Unlike traditional compression
approaches, CBIC first analyzes the content of the data before compression takes place. In this
approach, prior to compression, the data is preprocessed and is segmented into two non-
overlapping regions: (1) focus-of-attention regions (FARs) that contain the “important”
segments of the data, and (2) background regions. Subsequently, the former regions are
compressed using a lossless compression technique (maintaining fidelity), while the latter regions
are compressed with the aid of a lossy technique (attaining large reductions in data). The
intended result is an optimal balance between data reduction and data fidelity. In this case,
compression ratios 5-6 times greater than that of lossless compression alone can be reached
while preserving the important information.

1. Background

The technological advances in digital information transmission and archiving, as significant
as they have been in the recent years, cannot rival the perpetual growth in the amount of produced
data. In the coming years, this will especially be true in the medical field, where there is a unified
movement toward the digital age. While this movement is expected to enhance patient care, it
faces particularly difficult challenges in the areas of data transmission and archiving for
telemedicine applications. As a specific example, consider that over the next 5-10 years there will
be a movement toward full-field, digital mammography, which is primarily motivated by the
improved image quality over the traditional film-based approach.

In this work, we introduce a novel approach to information compression, namely CBIC,
which aims to achieve an optimal balance between data reduction and data fidelity. Unlike
existing techniques [1-3], in this approach, prior to compression, the data is preprocessed and is
segmented into two non-overlapping regions: (1) FARs that contain the “important” segments of
the data, and (2) background regions. Subsequently, the former regions are compressed using a
lossless compression technique (maintaining fidelity), while the latter regions are compressed
with the aid of a lossy technique (attaining large reductions in data).

2. Segmentation of digitized mammograms for CBIC

In screening mammography the “important” image information sought by radiologists
includes masses, microcalcifications, ducts, and the breast boundary. These regions often
constitute less than 15% of the mammogram. Therefore, a successful segmentation of these
events from the background regions (i.e., regions corresponding to connective tissue plus the non-
breast regions of the image) will make this a prime target for CBIC. Recall that after this
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segmentation step, a combination of lossy (for background regions) and lossless (for FARs)
compression techniques can be employed to achieve large reductions in data while maintaining
the original image quality. Our approach to accomplishing this segmentation step employs fractal
encoding.

The primary motivation for pursuing a fractal-based approach is that fractal encoding and
iterated function systems, in general, are ideal for characterizing the cloud-like texture that
represents the normal background tissue in mammograms. This scheme can therefore be used to
flag all structures that appear to be different from the normal background tissue. Fractal encoding
exploits the property of partitioned self-similarity of images [4]. This means that instead of being
formed of copies of its whole self, as is the case in exact self-similarity, the image is composed of
transformed parts of itself. In computing the coefficients of this transformation or map, it is
assumed that, because of the notion of partitioned self-similarity, each subregion of the image can
be described (in the sense of minimizing a dissimilarity metric) in terms of another subregion.
The former subregion belongs to the range pool, R, while the latter belongs to the domain pool,
D, of the map. If a given subregion in D cannot be mapped to any region in R (i.e., their measure
of dissimilarity is above a specified threshold), then R is further partitioned into smaller
subregions. This process continues recursively until either a similar subregion from D is found or
a specified maximum level of partitioning, L, is reached.

(d)

Figure 1. (a) A subregion of a digitized mammogram with clustered microcalcifications in the
lower portion of the image. (b) Quadtree partitioning as a result of fractal encoding. (c) Those
subregions and their 8-neighbors in (b) that never satisfied the similarity condition. (d) Input
mammogram segmented into FARs and background regions (black areas).

In the first of two pilot studies conducted thus far [5,6], it was shown that during the fractal
encoding process, for subregions in R that contain “important” information, L, is reached. The
reason is that the visual appearance of such events (e.g., microcalcifications) is different from that
of the coexisting background structures. Therefore, subregions in D that can be mapped to those



areas in the image with microcalcifications are expected to be nonexistent [Figures. 1(a) - (b)].
Subregions for which L, is reached along with their 8-neighbors make up the FARs, Figures
1(c), and (d). This hypothesis was further tested through a second pilot study [7], the results of
which are summarized next.

Eighty, 12-bit, 50 micron/pixel mammographic images were obtained from the University of
Chicago’s database and were used to carry out this pilot study. These included 35 abnormal and
45 normal cases. The images were collected from 4 different hospitals. Cases containing biopsy-
proven clustered microcalcifications were chosen randomly and the cluster locations were marked
by experienced radiologists at each site. To mitigate problems caused by global nonuniformities,
each mammogram was divided into 512x512, nonoverlapping subimages. Each subimage was
then processed independently. Subsequent analysis of the data showed that on average FARs
constituted only 17% of the input data but, at the same time, these FARs contained 92% of the
“important” information (in this case, microcalcifications) in the data.

3. Compression Strategies and preliminary results

Notice the irregular shapes of the FARs in Figure 1(d). In order to decrease the difficulty in
encoding such irregular shapes, bounding boxes can be placed around the FARs. Using this
method to identify the location of the FARs makes the encoding process easier, at the cost of
lowering the overall compression ratio because the bounding boxes are usually larger than the
FARs they encompass. The preliminary results presented in this paper were obtained with
bounding boxes manually placed around the FARs. Once the locations of the FARs have been
determined, there are several compression strategies that can be employed.

First, knowing that the FARs comprise, on average, about 17% of the image, a compression
ratio of approximately 5:1 can be achieved by simply setting the background to zero, leaving only
the FARs. Using a standard lossless coding technique on the result could bring that ratio up to
15:1. This, however, does not allow the background structures — which are required by
radiologists for context — to be seen.

The second strategy is to use a combination of lossy and lossless coding to preserve the
contextual structures while preserving the image fidelity in the areas of interest. By using a
standard lossy compression [8-10] on the background areas, the contextual structures can be
retained. The lossless coded FARs can then be superimposed over the lossy compressed
background, preserving the fidelity of the areas of interest. The cost for retaining these structures
comes out of the compression ratio.

When performing lossy compression on the background, there are a few directions that can be
taken. The first is to take the original subimage [Figure 2(a)] and segment out the FARs as
shown in Figure 2(b). Then, lossy compression is performed on the resultant image. However,
this is not a very good solution because certain transform-based lossy compression techniques
(e.g. Embedded Zerotree Wavelets [9]) cause ringing to appear around hard edges and transitions
as seen in Figure 2(c). Figure 2(d) shows the artifacts that can occur when lossless encoding is
performed on the FARs and the resulting images are added together. However, if it can be
accepted that the overhead of encoding the entire subimage lossily is trivial compared to the
amount of data generated by the lossless coding of the FARs, then lossless coding can simply be
superimposed over the entire lossy-compressed subimage, achieving the results shown in Figure
2(e). The results presented in this paper are based on this last approach.
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Figure 2. (a) A subimage of a digitized mammogram. (b) Subimage with the FARs removed.
(c) Results of lossy-coding on (b) the segmented image. (d) The losslessly encoded FARs added
to (c) the lossy-coded segmented image. (e) Results of lossily compressing the entire subimage
and then superimposing the losslessly encoded FARs.



For the preliminary results presented in this paper, twelve 512 x 512 subimages of digitized
mammograms were processed. The FARs resulting from the fractal encoding process were
manually encased in bounding boxes for compression. The information contained in the
bounding boxes was then losslessly compressed, while the entire subimage was compressed with
a lossy technique. Table I shows the preliminary results of combining the two. Notice that the
smaller percentage of the image contained in the FARs, the higher the compression ratio.

Table I. Compression results on 512 x 512 subimages of the breast tissue

512 x 512 % of Image % of Image Contained Compression Ratio with the
Subimage | Contained in FARs in Bounding Boxes Background Compressed at 80:1
1 2.93% 3.00% 34.21
2 2.93% 4.00% 30.42
3 3.74% 4.70% 27.27
4 6.24% 7.32% 20.22
5 6.54% 8.50% 18.03
6 6.72% 8.00% 18.72
7 8.96% 12.00% 13.54
8 9.40% 11.00% 14.48
9 11.01% 14.15% 11.93
10 12.45% 15.00% 11.01
11 13.01% 15.00% 11.01
12 21.80% 22.00% 7.81
Average 8.81% 10.39% 18.22
Min 2.93% 3.00% 7.81
Max 21.80% 22.00% 34.21

The expression for estimating the compression on a single subimage is:
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where B is the percentage of the image contained in the bounding boxes encompassing the FARs,

LLCR is the lossless compression ratio used on the FARs, and LCR is the lossy compression ratio

used on the background.

It can be seen from the data in Table I that the percentage of the image included in the
bounding boxes is, on average, 1.2 times greater than that included in the FARs. Also gathered
from the Table I trials is the fact that the average compression of the lossless coding was
approximately 2:1. Using this knowledge and equation (1), some estimates of the compression of
entire mammograms can be made. The FARs for twelve mammograms were generated and
estimated compression ratios were determined. The average compression of an entire
mammogram was found to be about 14:1. The minimum and maximum compression ratios were
6.38:1 and 18.70:1 respectively. These preliminary estimations based on the data in Table I show
that the results of CBIC are, on average, about 7 times higher compression than lossless
compression alone. In addition, the information in the areas of interest is guaranteed to be free of
distortion, which would not be the case if lossy compression alone was applied to the
mammogram.




4. Conclusion

Content Based Image Compression (CBIC) can greatly reduce the amount of data necessary
to archive and transmit large databases of mammography information. By using a quadtree
fractal encoding scheme to generate Focus of Attention Regions (FARs), a combination of lossy
and lossless techniques can be used to provide compression 4 to 6 times that of standard lossless
compression, while preserving the fidelity of the areas of interest.

While the preliminary results gathered in this initial study are quite good, there is some room
for improvement. By using smaller bounding boxes, the amount of data added to irregular shapes
that must be losslessly compressed can be minimized, raising the compression ratio. Also, other
forms of lossless encoding which have yet to be explored may lead to increased performance.

In addition to increasing the compression ratio, further work needs to be done in automating
the CBIC process. This can be accomplished by automatic generation of the bounding boxes.
Also, the compression process is currently being done in separate stages, with the lossless and
lossy algorithms in separate programs. This can be accomplished by combining the stages into a
single process.
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