
COMPUTATIONAL FLUID DYNAMICS FOR MULTIPHASE FLOW

S. Pannala and E. D’Azevedo

INTRODUCTION

Fluidized bed reactors are widely used in the chemical industry and are essential to the production of

key commodity and specialty chemicals such as petroleum, polymers, and pigments. Fluidized beds are

also going to be widely used in the next generation power plants in aiding conversion of coal to clean gas.

However, in spite of their ubiquitous application, understanding of the complex multi-phase flows

involved is still very limited. In particular, existing computer simulations are not sufficiently accurate/fast

to serve as a primary approach to the design, optimization, and control of industrial-scale fluidized bed

reactors. Availability of more sophisticated computer models is expected to result in greatly increased

performance and reduced costs associated with fluidized bed implementation and operation. Such

improved performance would positively affect U.S. chemical/energy industry competitiveness and

increase energy efficiency.

To improve fluidization simulation capabilities, two different projects are undertaken at ORNL with

the specific objective of developing improved fluidization computer models. On one hand, a very detailed

multiphase computer model (MFIX) is being employed. On the other hand a low-order bubble model

(LBM) is being further developed at ORNL with the eventual aim of real time diagnosis and control of

industrial scale fluidized beds.

MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose computer code developed

at the National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer

and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating

fluidized beds, spouted beds and gasifiers. MFIX calculations give transient data on the three-dimensional

distribution of pressure, velocity, temperature, and species mass fractions. MFIX code is based on a

generally accepted set of multiphase flow equations. However, in order to apply MFIX in an industrial

context, key additional improvements are necessary. These key improvements correspond to the two

ORNL efforts: (1) To develop an effective computational tool through development of a fast, parallel

MFIX code and (2) Develop infrastructure for easy collaborative development of the MFIX code and

exchange of information between the developers and users.

The details of the MFIX code and parallelization are given in recent papers [1,2] while the results are

described in this report.

RESULTS AND DISCUSSION

As a benchmark problem we used the simulation of a

circulating fluidized bed with a square cross-section,

corresponding to experiments conducted by Zhou et al. [3,4].

The bed has a square cross-section, 14.6 cm wide, and is

9.14 m in height. The schematic of this setup is shown in

Fig. 1a. The solids inlet and outlet are of circular cross-

section in the experiments but for geometric simplicity, we

have represented them by square cross-section. The area of

the square openings and the mass flow rate corresponds to

that of the experiments. At a gas velocity of 55 cm/s the drag

force on the particles is large enough to blow the particles to

the top of the bed and make the bed flow like a fluid or

fluidized bed. The particles strike the top wall and some of

them exit through the outlet while the rest fall down to

encounter the upcoming stream of solids and gases.

In the benchmark problem a three-dimensional Cartesian

coordinates system was used. The spanwise directions were

discretized into 60 cells (0.24 cm, I & K-dimensions) and the

axial, streamwise direction into 400 cells (2.29 cm, J-dimension). The total number of computational cells

is around 1.6 million, including the ghost cells; the dynamic memory required is around 1.6 GB. Three-

dimensional domain decomposition was performed depending on the number of processors for the DMP

run. A low-resolution simulation was also carried out with half the resolution in each of the three

directions for comparison.

In all of the numerical benchmarks reported here for the high-resolution case, two-different

preconditioners were used with BICGSTAB linear solver. In one case, red-black coloring in the I-K plane

and line-relaxation along J direction was used. With red-black coloring, the number of BICGSTAB

iterations is quite insensitive to the number of subdomains used. In the other case, no preconditioner was

used. The benchmarks reported here were carried out on one 32-way node of the machine Cheetah at the

center for Computational Sciences, Oak Ridge National Laboratory. Cheetah is a 27-node IBM pSeries

System, each node with sixteen Power4 chips, a chip consisting of two 1.3 GHz Power4 processors. Each

processor has a Level 1 instruction cache of 64 KB and data cache of 32 KB. A Level 2 cache of 1.5 MB

on the chip is shared by the two processors, and a Level 3 cache of 32 MB is off-chip. Cheetah’s

estimated computational power is 4.5 TeraFLOP/s in the compute partition.

Fig. 1. Schematic of the

simulated CFB.

NUMERICAL RESULTS

Figure 2 compares the axial-profiles of the time-averaged voidage with the experiments. The voidage

is defined as the volume fraction of the gas in any given cell; a voidage of 1 corresponds to pure gas and a

voidage of 0 corresponds to pure solid (although this is physically and numerically impossible as the

solids go to random close packing with voidage around 0.4, depending on the particle size). The results at

three different lateral locations match very well downstream of the inlet region but are not as accurate in

the inlet region (although there is some ambiguity in the precise inlet geometry from the limited

information in the literature [3,4]). The higher resolution results seem to agree with experiments better

than lower resolution ones near the inlet; even higher resolution might be required to resolve the relevant

scales in this section. The voidage across the bed (Fig. 3) is predicted well in the upper quarter of the bed.

The solids velocity (Fig. 4) is in much better agreement in the near-wall regions of the bed while it is over

predicted near the centerline for higher sections in the bed.

Fig. 2. Axial profiles of time-averaged voidage
fraction.

Fig. 3. Lateral profiles of time-averaged
voidage fraction.

Fig. 4. Axial profiles of time-averaged solids velocity at a height of 5.13 m.

Figure 5 shows instantaneous void fraction

snapshots which show recirculation of solids in the

vessel. The solids are injected at the base and the high

velocity inlet gas carries them to the top (Fig. 5a). The

solids accumulate at the bottom. There is also a slight

build-up of solids near the top, due to exit effects. Most

recirculation of solids is in a narrow band close to the

walls (Fig. 5b). The solids accumulated on the top fall

down and encounter the upflow at the centerline of bed

and tend to move towards the walls (Fig. 5c). Finally in

Fig. 5d, the falling solids are mixed with the upcoming

solids so as to be recirculated to the top. These figures

are shown here as an illustration of the physics that can

be captured using numerical simulations; a more

detailed analysis of this data will be published in

another journal.

PARALLEL RESULTS

Table 1 shows the execution times of the code on one node of the IBM SP Cheetah, for ten time steps

of the test problem using line relaxation as the preconditioner. An entry in the table gives the running time

in seconds on P processors, where P is the product of the number of MPI tasks and the number of threads

per task. In all the runs, message passing was through the internal shared memory and not over the

network. The runtime on a single processor is not included in the table due to the large problem size

which resulted in an extremely long execution time. The runs were carried out several times and the best

times are recorded here. The execution times for 8 tasks or 8 threads are not reported here as the run times

varied drastically from one run to another run and this behavior could not be explained. Further analysis is

required to ascertain the reasons.

Table 1 indicates that for a fixed number of processors, the execution time of the code is affected by

the mix of the number of MPI tasks and the number of threads per task. For the test problem on

32 processors, 32 one-thread or 16 two-thread MPI tasks give the best combination. In general, the simple

rule of “one thread per MPI task, one MPI task per processor” gives the best performance. This general

observation is consistent with previous hybrid parallelization efforts on somewhat similar architectures

[5,6]. One of the reasons might be the fact that thread creation/destruction is very expensive on the IBM

Fig. 5. Snapshots of voidage fraction
in the Y-Z plane at X = 1.2 cm for
different times: (a) 1.12 s, (b) 2.0 s,
(c) 2.82 s, and (d) 3.42 s. Here red
represents low voidage (0.6) and blue
represents high voidage (1.0). Regions of
red (low voidage) have higher concentra-
tions of solids and blue corresponds to
higher concentrations of air.

Table 1. Runtimes (in seconds) for 10 iterations for the case using line relaxation
as the preconditioner.

SPs. Replacing the loop-level SMP model with a program-level SMP model, where the data is

decomposed among threads at the beginning of the program, may incur less overhead.

Figure 6 compares the SMP and DMP parallel performance. It clearly shows that the DMP

performance is far better than that of SMP in the extreme case of hybrid parallelization. Figure 7 captures

the essence of the data given in Table 2. It is very evident that DMP parallelization, for this problem on

this architecture, is desirable.

Fig. 6. SMP/DMP Speedup Comparison. Fig. 7. Parallel performance for all the cases
(Table 1) with line relaxation as the preconditioner

Table 2 gives the runtimes of the code for the test problem without the use of preconditioner. This

required 124 nonlinear iterations for ten time steps compared to the 107 iterations when using the line

relaxation preconditioning. However, the code was 20% faster without preconditioning; this may be

1 2 4 8 16 32
1 3188 2012 1125 605 445

2 3105 1666 1025 489 350

4 1709 1121 683 282

8 1041 554 788

16 449 233

32 235

 MPI Tasks
 SMP Threads

Speedup (SMP vs. DMP)

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

MPI Tasks/Threads

S
p
ee

d
u
p

DMP

SMP

Ideal

0

5

10

15

20

25

30

35

S
pe

ed
up

2 4 8 16 32

1
T

hr
ea

d

4
T

hr
ea

ds

16
 T

hr
ea

ds Id
ea

l

Number of
Processors (Tasks

* Threads)

1 Thread

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

Ideal

Table 2. Runtimes (in seconds) for 10 iterations for the case with no preconditioner.

attributed to the considerably lower cost of an iteration without preconditioning. The speedups are

graphically depicted in Figs. 8 and 9. On close observation of speedup data, it can be noted that the shared

memory efficiency has dropped further, presumably because the code must take more iterations to

converge than with line relaxation. This would increase the number of threads created/destroyed per time-

step and explains the poorer performance of the SMP code.

Fig. 8. SMP/DMP Speedup Comparison. Fig. 9. Parallel performance for all the cases
(Table 4) with no preconditioner.

The code has to be profiled extensively for a range of problems and also for different architectures

before any general conclusions can be made regarding the advantages of DMP code versus a hybrid code.

In the present case, MPI communication is memory-to-memory copy as all the processors belong to the

same node. Some of the conclusions might change using node-to-node communication.

1 2 4 8 16 32
1 2273 1253 768 653 440

2 2295 1290 665 480 299

4 1151 644 369 245

8 689 473 443

16 340 191

32 186

 MPI Tasks
 SMP Threads

Speedup (SMP vs. DMP)

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

MPI Tasks/Threads

S
p
ee

d
u
p

DMP

SMP

Ideal

0

5

10

15

20

25

30

35

S
pe

ed
up

1 2 3 4 5

1
T

hr
ea

d

4
T

hr
ea

ds

16
 T

hr
ea

ds Id
ea

l

Number of
Processors (Tasks *

Threads)

Parallel Performance

1 Thread

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

Ideal

The above efforts will be continued into next year. In addition, implementation of various non-linear

coupled solvers for faster convergence would be explored. The documentation, technical reports related to

MFIX, and the latest version of MFIX source code are all available from http://www.mfix.org.

REFERENCES

1. D’Azevedo, E., Pannala, S., Syamlal, M., Gel, A., Prinkey, M., and O’Brien, T., “Parallelization of

MFIX: A Multiphase CFD Code for Modeling Fluidized Beds,” Session CP15, Tenth SIAM

Conference on Parallel Processing for Scientific Community, Portsmouth, Virginia, March 12–14,

2001.

2. Pannala, S., E. D’Azevedo, T. O’Brien, and M. Syamlal, “Hybrid (mixed SMP/DMP) parallelization

of MFIX: A Multiphase CFD code for modeling fluidized beds,” Proceedings of ACM Symposium on

Applied Computing, Melbourne, Florida, 9–12 March, 2003.

3. J. Zhou, J. R. Grace, S. Qin, C. M. H. Brereton, C. J. Lim, and J. Zhu, Voidage profiles in a

circulating fluidized bed of square cross-section, Chem. Engg. Science, 49 (1994), pp. 3217–3226.

4. J. Zhou, J. R. Grace, S. Qin, C. J. Lim, and C. M. H. Brereton, Particle velocity profiles in a

circulating fluidized bed riser of square cross-section, Chem. Engg. Science, 49 (1994),

pp. 3217–3226.

5. F. Mathey, P. Blaise, and P. Kloos, OpenMP optimization of a parallel MPI CFD code, Second

European Workshop on OpenMP, Murrayfield Conference Centre, Edinburgh, Scotland, U.K.,

September 14–15, 2000.

6. D. A. Mey and S. Schmidt, From a vector computer to an SMP-Cluster hybrid parallelization of the

CFD code PANTA, Second European Workshop on OpenMP, Murrayfield Conference Centre,

Edinburgh, Scotland, U.K., September 14–15, 2000.

