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ABSTRACT

Hyperspectral remote sensing is an emerging technology with the potential to provide detailed
environmental data for a region, rapidly and at low cost.  In October 2003, hyperspectral images were
acquired in Osage County, OK, a major oil production area.  ORNL has developed clustering methods for
grouping hyperspectral measurements into as many distinct classes as possible and applied them to the
Osage County measurements.  Clusters have been found for two cluster radii.  For the larger radius, the
number of clusters ranges from 35 to 133 and the range for the smaller radius is from 100 to 418.

INTRODUCTION

Hyperspectral remote sensing is an emerging technology with the potential to identify plant species, map
vegetation, characterize soil properties, identify contamination, classify ecological units and habitat
characteristics, and differentiate causes of vegetation stress.  The main benefit of this project, both to the
DOE Fossil Energy Program and to the petroleum industry, will be an improved ability to provide
detailed environmental data for a region, rapidly, at low cost.  Increasingly, environmental data are
needed to assess present conditions of lands owned, leased or managed by petroleum companies, and to
characterize and quantify changes in the environmental conditions of these lands through time.  Present
methods of assessing large areas depend extensively on field surveys, which can take weeks or months to
complete.  Such methods are inconvenient and can be expensive.  Further, some areas that are
inaccessible or very large are difficult or virtually impossible to monitor accurately using field-survey
techniques only.  Hyperspectral sensing can be used to: identify plant species, map vegetation,
characterize soil properties, identify contamination, classify ecological units and habitat characteristics,
and differentiate causes of vegetation stress.  The petroleum industry needs reliable analysis tools for
rapid quantitative measurements and identification of type of stress causing environmental impact.

The oil industry is responsible for large tracts of land all over the world, used for production, refining, or
marketing.  If this project is successful at developing appropriate algorithms for the oil industry, remote
sensing offers tremendous opportunities for the industry.  Although many algorithms have been and are
being developed, their focus is primarily on resource management (forest fires) and agriculture (crop
nutrient and water needs).  Algorithms needed by the oil industry (identification of hydrocarbons and
differentiation of different types of stress relevant to our operations) are not currently available.   With



remote sensing, there is the ability to reduce the time to acquire important environmental information
from months to days.  Further, the data acquired can have a resolution of meters as opposed to current
field monitoring, where sampling sites often are tens of meters apart.  Remote data can be collected on a
regular basis through time to detect and quantify environmental change.  Regular data collection has a
huge impact on the ability of the oil industry to baseline and monitor environmental issues.  By
understanding environmental conditions, capital and remediation projects can be accelerated, saving
millions of dollars.  By monitoring conditions more closely and in a timelier manner, we can improve
management and protection of the environment.

An approximate estimate of the cost of current field monitoring is $20,000/acre.  The cost of HyVista
hyperspectral imagery is about $60 K for 80,000 acres (324 square km).  Using commercial software
(ENVI), preliminary analysis of the measurements to produce geobotanical maps costs $10 K.  Thus, after
R&D is completed, the total cost of producing geobotanical maps may be about $1/acre.  Advanced
methods using satellite data may be able to reduce the cost of hyperspectral imagery component of the
total cost.

Produced water is the largest volume waste product in upstream activities.  The oil industry needs low
cost accurate methods to quickly detect environmental discharges of produced water in oil fields that they
operate or plan to purchase.  DOE is supporting this project because it is developing an important
environmental monitoring technique that does not currently exist.

DISCUSSION OF CURRENT ACTIVITIES

SITE SELECTION

The US Geological Survey (USGS), the USDA Agricultural Research Service (ARS), and ORNL are
collaborating to develop remote (airplane or satellite) hyperspectral sensor techniques to identify areas
impacted by oil production.  This is the final year of a multiyear project.  Initially the project was focused
on an oil spill site at the Jornada Experimental Range near Las Cruces, NM.  New methods were
developed to analyze hyperspectral field data measurements that were collected at Jornada.  This year our
focus shifted to Osage county, OK, which is the Osage Indian Reservation and has been a major oil
producing area (38,500 oil wells) since 1896.   The county is large (2,260 square miles) and 1,480 square
miles are within a quarter mile of an oil well.  The Osage Nation owns the mineral rights and there are
500 independent operators in the county.  Many areas in the county have brine scars or weathered oil pits
(The USGS has sample photographs: http://ok.water.usgs.gov/skiatook/Skiatook. Photo.html).  The
objective of the project was to collect hyperspectral remote data in selected regions of Osage county and
analyze the data to detect brine scars, oil pits, and plant stress associated with brine and oil.

In November 2002, the USGS and ORNL visited Osage County to select potential regions to image.  The
USGS has been conducting research at two sites (Site A and Site B) that are adjacent to Skiatook Lake
and owned by the Army Corps of Engineers.  We selected the 2 USGS sites, 6 sites on the John Zink
Ranch, 4 sites on the Tallgrass Prairie Preserve (owned by the Nature Conservancy), and 5 sites on the
Bluestem Ranch.

ORNL selected the HyVista Corporation (http://www.hyvista.com/) to measure the hyperspectral data.  In
May 2003, ORNL contacted HyVista and requested that they collect images of seven regions that total 39
square kilometers.  One of the seven regions is shown in Figure 1.  The red markers on the figure are
Global Positioning System (GPS) waypoints that were measured during the field visit in November 2000.



The region in Figure 1 includes USGS Site B (114), and three Zink Ranch sites: 115, 124-125, and 126-
127.  On October 12, HyVista made the images.  On October 27 and 28, a team from the USGS, ARS,
and ORNL measured hyperspectral field data at 13 sites in the seven areas where the remote data was
measured.

On November 10, ORNL received the data from HyVista .  HyVista created a flight path that imaged
three regions with overlapping strips.  Each strip is 512 three-meter-pixels wide, for a total of 1536
meters.  The North region has three strips with a total length of 12 km and a total area of 18 square km.
The South region has 6 strips with a length of 69 km and an area of 106 square km.  The West region has
5 strips with a total length of 40 km and an area of 61 square km.  The total area is 185 square km.  The
data was received on five DVD and totals 14.4 gigabytes.  The latitude and longitude of each pixel was
provided.  ORNL verified that the data covered our 7 study regions.

Figure 1.  Selected region for Site B and three of the Zink Ranch sites.

The HyVista data has 126 spectral bands.  Using three of the bands we can create the color
image in Figure 2.



Figure 2.  Three band HyVista image of Site B on the right side of Figure 1.

ANALYSIS

Our objective is to group hyperspectral measurements into as many distinct classes as possible.  We can
distinguish between information classes and spectral classes, where information classes are human
classifications and spectral classes are groups or clusters of measurements made by a computer.  A
botanist uses many features to classify a plant in a particular information class: leaf type (flat, needle,
deciduous, succulent), leaf geometry, attributes of branches, flowers and seeds, and smell.  A
hyperspectral reflectance measurement consists of hundreds of numbers that can range between zero and
one.  Spectral classes are groups of measurements with similar values for their reflectance spectra.

Hyperspectral sensors measure radiance and the data can be transformed to reflectance.  For each of N
spatial measurements, we transform the data by subtracting the mean of the M spectral values and

normalizing to unit length.  After the transformation, the data [ ija , where i = 1, M and j = 1, N] have the
following properties: the spectral sum of data values is 0 and the spectral sum of the squares of the data
values equals 1.
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The components of the correlation matrix ( jkc ) are the correlation coefficient between the spectrum at
pixel j and the spectrum at pixel k:

jkc = ija ika
i

∑  . (3)

For hyperspectral data, the correlation matrix can be huge (If the data has millions of pixels, the full
correlation matrix will have trillions of elements).  Ultimately, we need to calculate the correlation matrix
between a few measurements that will be the root vectors for the clusters and all of the measurements (a
matrix with 100 rows and 100,000 columns).  Iterative methods can be used to screen the measured
vectors and find candidates for the root vectors.

The Euclidean distance ( jkd ) between two measurements is defined by:

jkd =
2

ija − ika( )
i

∑ . (4)

Using (2) and (3), the Euclidean distance is directly related to the components of the correlation matrix

jkd = 2 1− jkc( )  . (5)

We will define the cluster radius ( cr ) by:

cr = max 1− jkc[ ] . (6)

Our clustering algorithm depends on two parameters, the cluster radius ( cr ) and the minimum number of
members in a cluster ( cn ).  For each value of the cluster radius, we define the set of spectral neighbors
( k) for each spatial measurement point:

k = j | j ∈ 1, N[ ], jkc >1− cr{ } (7)

Since the limits on the correlation coefficient are ±1 , the cluster radius will be in the interval [0,2].  For a
sufficiently small cluster radius, all of the neighborhoods ( k) will have one member (the point k).  For
a sufficiently large cluster radius, all of the neighborhoods will have all N points.  When the cluster radius
is given, no iterations are required to calculate the members of each neighborhood.

We start with an arbitrary root vector and calculate the correlation coefficients with all of the other
vectors.  We can count the members of the neighborhood.  If there are more than cn  members, we have a
cluster.  To choose the next root vector, we look for a vector that is not close to any of the current root
vectors.  We need a criteria for "not close".  Each cluster is a ball in an M dimensional space with a radius

of rc.  A necessary condition for two spheres to be non-overlapping is that the distance between their root

vectors must be at least 2 rc.  A necessary condition for many spheres to be non-overlapping is that the

minimum distance between all possible root vectors must be at least 2 rc.  But we cannot know all
possible root vectors when we start to choose root vector.  We find that the clusters overlap and that the



overlap decreases when we define more root vectors and as we increase the distance from 2.  Thus, our

criteria for "not close" is that the distance between two root vectors must be more than ra = α rc, where α
is greater than 2 (currently, α = 2.8).  Another alternative would be to have value of α that is high for a
small number of root vectors and decreases to 2 as the number of root vectors increases.

We are attracted to the terminology for human population patterns on the surface of the Earth.  A cluster
could be like a neighborhood in a large city or a subdivision in a rural county.  We want to define distinct
clusters, but can allow the clusters to overlap.  We will classify each vector by its distance from the

closest root vector.  If the distance is less than rc, the vector is a member of the cluster.  We will define a

group distance rg that is analogous to the size of the city or county.  If the distance is more than rc and

less than rg , the vector is associated with the cluster.  If a vector is farther than rg from all of the root

vectors it will be unclassified.  We will introduce a fourth distance rb, which is the maximum allowable

distance from the first root vector.  We have used rb to exclude vectors that corresponded to reflection
from water.

As we calculate each row of the correlation matrix, we update the closest root vector.  Let, gj be defined

by:  jg =
k

max jkc .  As each correlation coefficient is calculated, we can update gj.  Let

 = 1 - r.  Then, a = 1 - ra.  After we calculate each row of the correlation matrix, we look for a vector
that is "not close" to any of the current root vectors and add it to the list of root vectors.  Thus, the next

root vector satisfies: gj < a. and c1k > b.  When we get to the end of the list of vectors, we stop
clustering.

We will store the root vectors in an array: ϕ(m).  Before we begin clustering, we choose the first root
vector [ϕ(1)] and set the cluster counter (mc) to zero.  During the cluster algorithm, we will choose the
next root vector.

RESULTS

We have analyzed the hyperspectral images for the nine sites listed in Table 1.  To compare Site B with
its neighborhood, we expanded the area from 12,740 pixels to 90,720 pixels.  The number of pixels
ranges from 23,100 for Site A to 104,160 for Bluestem 134.  The two rows for each of the sites present
the results for two different cluster radii: 0.010 and 0.004.  For the larger radius, the number of clusters
ranges from 35 for Zink Ranch 127 to 133 for Bluestem 134. For the smaller radius, the number of
clusters ranges from 100 for Site A to 418 for Bluestem 134.



Name Clusters Members Associated Unclustered Pixels
Blue 134 133 76120 28027 13 104160

418 55271 48785 104 104160
Blue 135 81 53687 21366 19 75072

238 31379 43625 68 75072
Blue 136 61 49244 10755 1 60000

185 27522 32454 24 60000
Site A 46 13702 3337 6061 23100

100 7573 8856 6671 23100
Site B 82 68290 11202 11288 90720

219 44506 34709 11505 90720
Old Site B 38 8787 2427 1526 12740
TGP 118 49 20324 8053 9 28416

125 11737 16652 27 28416
TGP 122 74 25059 23951 10 49020

257 25420 23566 34 49020
Zink 127 35 25923 11030 7 36960

115 25821 11132 7 36960
Zink 131 50 68171 19724 9 87904

174 41595 46298 11 87904

Table 1.  Summary of the clustering results.

At the end of the clustering algorithm, we eliminate overlap by assigning each pixel to the closest root
vector.  We associate pixels that are not members of a cluster with the nearest root vector, if they are

within the group radius (rg) of a root vector.  In Table 1, the Members column is the sum of all of the
cluster members, the Associated column is the sum of all of the associated pixels, and the Unclustered
column is the sum of all pixels that are neither members nor associates.

The Unclustered values are high for Sites A and B because we used rb to exclude the water pixels.

USGS Site B

The USGS Site B is in the upper middle of Figure 2.  The boundaries of old (12740 pixel) analysis region
are displayed in Figure 3.  Figure 3 is based on the same three band HyVista reflectance data as in Figure
2.  However, the magnitude of the colors for each pixel has been increased until one of the colors is at the
maximum value.  We call it a "Bright Pixel" image.  The unvegetated areas disturbed by oil production
and changes in the lake level are orange on the image.  As displayed in Table 1, we have created clusters.
The next step is to produce geobotanical maps in which each cluster has a different color and the cluster
position is plotted on a map that covers the same region as Figure 3.  In Table 1, the number of clusters
ranges from 35 to 418.  We have created a 27 value color table by allowing each of the three primary
colors (red, green, blue) have three values (zero, middle, high).  Since it is difficult to distinguish all of
the 27 colors on a computer screen and even harder on printed output, we cannot create a unique color for
each of the (35 to 418) clusters.  The old Site B region has 38 clusters.  We can display all of the big
clusters with a unique color if we set the definition of big high enough.  The big clusters for Site B are
displayed in Figure 4.  For Site B, big means members greater than 4.  For Bluestem 134 with 133
clusters, big means members greater than 80.  We are primarily interested in brine scars.  We can create
an image where most vegetation is green, and we can use the colors for all of the brown (not green)



clusters.  For a large number of brown clusters the color scale repeats after all of the colors are used.
Figure 5 displays all of the brown clusters for Site B.  One of our challenges is to differentiate between
different sources of environmental damage.  For this site, we want to distinguish roads from areas
damaged by produced water spills.  An enlargement of the road in the upper left area of the study area is
displayed in Figure 6 and an enlargement of the area down stream from the produced water holding pit is
shown in Figure 7.  The holding pit is the white region in Figure 7 (and all of the other figures).  From the
pit, the site has a gentle slope to the lakeshore on the right.  Comparing the two images, we find two
clusters that are only in the road image, nine clusters that are only in the pit image, and 7 clusters that are
in both images.  Thus, we can distinguish road damage from produced water damage.

Figure 3.  Bright Pixel Image of the Initial Site B Analysis Region.



Figure 4.  Site B Big Clusters.

Figure 5.  All Brown Clusters for Site B.



Figure 6.  Enlargement of Road in upper left of Figure 5.

Figure 7.  Enlargement for Site B.


