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/14 /Abstract

/15 /

/16 / Work by Scruggs in the 1960s demonstrated that tensile ductility could be achieved at room temperature in powder

/17 /metallurgically-produced Cr alloyed with MgO. During consolidation, much of the MgO converted to the MgCr2O4 spinel phase,

/18 /which was hypothesized to getter nitrogen from the Cr, rendering it ductile. We have duplicated this effect, achieving room

/19 /temperature tensile elongations of 4% for hot-pressed Cr�/6MgO�/(0�/1)Ti (wt.%) and 10% for hot-pressed and extruded Cr�/

/20 /6MgO�/0.75Ti. Direct incorporation of nitrogen into the MgCr2O4 phase was not detected; however, impurities, particularly

/21 /nitrogen and sulfur, were observed to segregate to and/or precipitate at interfaces between the MgO/MgCr2O4 phases and the Cr

/22 /matrix. Exploratory studies of other non-spinel forming oxide dispersions (La2O3, TiO2 and Y2O3) showed a similar pattern of

/23 /impurity segregation/precipitation, suggesting that there is nothing unique about spinel dispersions in Cr with regards to impurities.

/24 /However, none of these other dispersions resulted in similar levels of tensile elongation.

/25 /# 2003 Elsevier Science B.V. All rights reserved.

/26 /Keywords: Powder processing; ODS; Composites; Mechanical properties; Segregation; Embrittlement; Cr

/27 /1. Introduction

/28 / Impurities are a major contributor to the ambient-

/29 /temperature brittleness of Cr [1]. Transgranular cleavage

/30 /fracture in Cr has been linked to slip-induced crack

/31 /initiation at grain boundaries and/or grain boundary

/32 /impurity precipitates [2,3]. Interstitial impurities have

/33 /also been associated with reduced mobility of screw

/34 /dislocations in body-centered cubic (BCC) metals such

/35 /as Cr, with an accompanying decrease in ductility [4].

/36 /Nitrogen is particularly deleterious due to its high

/37 /solubility in Cr at elevated temperatures, rapidly de-

/38 /creasing solubility with decreasing temperature, and its

/39 /tendency to form fine, acicular precipitates, often at

/40 /grain boundaries [1].

/ 41/ The development of Cr as a structural material was

/ 42/aggressively pursued from the late 1950s through the

/ 43/early 1970s [1]. One of the most interesting findings from

/ 44/this era was pioneering work by Scruggs et al. [5,6], who

/ 45/discovered that room temperature tensile ductility could

/ 46/be achieved in commercial-grade Cr with high levels of

/ 47/impurities by the addition of MgO. Blended, sintered,

/ 48/and extruded powders of Cr, MgO, and Ti in the range

/ 49/of Cr�/(2�/6)MgO�/0.5Ti weight percent (wt.%) were

/ 50/reported to exhibit room temperature tensile elongations

/ 51/of up to 20%. Scruggs [5,6] hypothesized that this

/ 52/ductility resulted from the gettering of N and other

/ 53/impurities from the Cr matrix into a MgCr2O4 spinel

/ 54/phase, which forms from the reaction of MgO and

/ 55/Cr2O3 during powder consolidation since commercial

/ 56/purity Cr powder typically contains greater than 0.5

/ 57/wt.% oxygen. (The 0.5 wt.% Ti was added to the alloys

/ 58/for general gettering purposes.)
/ 59/ The Scruggs Cr�/6MgO�/0.5Ti alloy was successfully

/ 60/used for components such as a gas turbine flame holder

/ 61/and as a thermowell in an ethylene cracking furnace
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/62 /after a carburization surface treatment [7]. However,

/63 /efforts in the 1960s to create environmental-embrittle-

/64 /ment-resistant, high-strength Cr and Cr�/MgO alloys for

/65 /demanding high-temperature applications such as gas
/66 /turbine blades, with a brittle to ductile transition

/67 /temperature (BDTT) below room temperature, were

/68 /unsuccessful [1]. Interest in Cr as a high-temperature

/69 /structural alloy waned in the 1970s, and the work by

/70 /Scruggs et al. [5�/7] has been largely forgotten.

/71 / There has been a resurgence of interest in Cr as a

/72 /structural material [4,8�/13], driven by its resistance to

/73 /high-temperature corrosion, which makes it of great
/74 /potential utility for the chemical and process industries,

/75 /and its relatively low coefficient of thermal expansion

/76 /(CTE), which is attracting attention for application as a

/77 /metallic interconnector in solid oxide fuel cells [14].

/78 /Inadequate room temperature mechanical behavior is

/79 /still a major limitation. The goal of the present work was

/80 /to revisit the work of Scruggs, to attempt to replicate the

/81 /MgO ductilization effect, and to investigate the pro-
/82 /posed mechanism of N gettering to provide a basis to

/83 /guide alloy development efforts devoted to a new

/84 /generation of oxide dispersion ductilized Cr alloys.

/85 /2. Experimental

/86 / An ingot of original Cr�/6MgO�/0.5Ti (wt.%) alloy
/87 /manufactured in the 1960s was obtained from Dr.

/88 /Scruggs for study. Details of the processing conditions

/89 /for this specific ingot were not available; however, these

/90 /alloys were typically manufactured by sintering blended

/91 /Cr, MgO, and Ti powders at approximately 1600 8C for

/92 /1�/2 h and 9:1 extruding at 1200�/1300 8C [5,6].

/93 / In this study, unalloyed Cr, Cr�/0.5Ti, and a series of

/94 /Cr�/6MgO�/(0, 0.5, 0.75, 1, 2.2)Ti (wt.%) alloys were
/95 /made from standard, commercial grade powders (Table

/96 /1) of nominal 1�/5 mm size range. The MgO powder was

/97 /calcined and stored in argon to prevent interaction with

/98 /water vapor. The alloys were typically produced by

/99 /oblique blending the powders for 24 h using zirconia

/100 /balls, then hot-pressing under vacuum in a graphite die

/101 /at �/1600 8C for 2 h at approximately 20 MPa. The

/102 /cooling rate in the hot-press was relatively slow (under
/103 /vacuum), taking approximately 30 min to drop below

/104 /1000 8C and then on the order of hours to approach

/105 /room temperature. (The Cr�/0.5Ti alloy was made by

/106 /hot isostatic pressing (HIP) in a Nb can at 1600 8C for

/107 /1.5 h at approximately 210 MPa and then cooled to near

/108 /room temperature in about 1�/1.5 h). A hot-pressed Cr�/

/109 /6MgO�/0.75Ti alloy was further processed by extruding

/110 /at 1300 8C with a 9:1 reduction ratio. The original
/111 /Scruggs alloy and the alloys of the present work were all

/112 /found to have high levels of N, S, C and O impurities

/113 /(Table 1).
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ROOF/114 / Hot-pressed alloys of composition Cr�/6La2O3, Cr�/

/115 /6TiO2, and Cr�/6Y2O3 (wt.%) were also made for

/116 /comparative purposes with the Cr�/6MgO alloys, using

/117 /the same processing conditions. The specific oxides used

/118 /were selected because, like MgO, they are thermodyna-

/119 /mically more stable than Cr2O3, but they have different

/120 /physical properties from MgO and do not form spinel

/121 /phases with Cr/Cr2O3.

/122 / Tensile properties of the candidate alloys were

/123 /evaluated at room temperature in laboratory air using

/124 /a flat ‘dogbone’ configuration approximately 0.6�/0.7

/125 /mm thick with a gage length of 12.7 mm. The samples

/126 /were prepared to a surface finish of 600 grit (US

/127 /standard) and tests were typically performed with a

/128 /crosshead speed of 2.54 mm min�1 (initial strain rate of

/129 /3.3�/10�3 s�1). Select tensile samples were also made

/130 /from rectangular blocks of material compressed 0.5�/

/131 /1.5% parallel to the gage length direction at room

/132 /temperature to assess the potential importance of mobile

/133 /dislocation nucleation in the ductilization mechanism.

/134 / Microstructures were characterized by optical micro-

/135 /scopy, scanning electron microscopy (SEM), in particu-

/136 /lar using low-voltage energy-dispersive X-ray (LV-EDS)

/137 /spectrum imaging [15], and electron probe microanalysis

/138 /(EPMA), using pure element standards for Cr, Mg, and

/139 /Ti, a BN standard or a Cr2N standard for N, and an

/140 /Al2O3 standard for O. In an effort to determine the

/141 /microstructural location of impurities, particularly N,

/142 /select samples were also characterized by 3D atom probe

/143 /[16], electron energy loss spectroscopy (EELS) in the

/144 /transmission electron microscope (TEM), and after in-

/145 /situ fracture in a scanning Auger nanoprobe (SAN).

/146 /EELS spectra were acquired under standard conditions

/147 /(E�/300 keV, a�/3 mrad, b�/5 mrad, 0.2B/t /lB/0.4).

/148 /To assess the maximum concentration of N in the spinel

/149 /phase, second difference spectra were formed using

/ 150/standard functions within the Gatan EL/P software.

/ 151/The SAN data was collected at a primary beam voltage

/ 152/of 10 kV and 10 nA, with a primary electron beam

/ 153/diameter of �/20 nm. Compositions from the SAN were

/ 154/determined from a standardless analysis and should be

/ 155/considered semiquantitative. The vacuum was main-
/ 156/tained at 5�/10�10 torr and all data were obtained

/ 157/within 6 h of (in-situ) sample fracture. Under these

/ 158/conditions residual gas absorption of H2O, CO, and

/ 159/CO2 on the sample surface is still possible, which may

/ 160/result in artificially high levels of C and O.

/ 161/3. Results and discussion

/ 162/3.1. Room temperature tensile properties

/ 163/ The original Scruggs sintered and extruded Cr�/

/ 164/6MgO�/0.5Ti wt.% alloy exhibited �/8% tensile elonga-

/ 165/tion at room temperature with a 600 grit surface finish

/ 166/and at a strain rate of 3.3�/10�3 s�1 (Table 2), despite

/ 167/high levels of N and other impurities (Table 1). This is a

/ 168/major improvement over the typical room temperature

/ 169/mechanical behavior of Cr, which does not exhibit any

/ 170/appreciable tensile elongation (�/1% range) unless the
/ 171/specimens have been electropolished, have a low inter-

/ 172/stitial impurity (B/0.001�/0.005 wt.% N), and, usually,

/ 173/have been cold-worked prior to testing [1,2].

/ 174/ Hot-pressed unalloyed Cr and Cr�/0.5Ti (HIP) con-

/ 175/trol alloys exhibited tensile elongations of �/1% prior to

/ 176/fracture (Table 2). In contrast, hot-pressed Cr�/6MgO

/ 177/alloys exhibited a tensile elongation of �/4%, an

/ 178/improvement over the behavior of the control alloys
/ 179/but still just half of the elongation exhibited by the

/ 180/Scruggs alloy. The addition of Ti to Cr�/6MgO at levels

/ 181/of 0.5 and 1 wt.% had little effect on tensile elongation

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:9

Table 2

Room temperature tensile properties (600 grit finish, 3.3�/10�3 s�1 strain rate)

Alloy wt.%, (no. samples) Yield (MPa) Fracture (MPa) % Elongation

Unalloyed Cr (4) 1579/6 1879/10 1.09/0.3

Cr�/0.5Ti (HIP) (3) 1819/4 2319/14 1.39/0.3

Cr�/6MgO (6) 2199/12 3079/13 49/1

Cr�/6MgO (3) (1.5% compressive prestrain) 2689/17 3179/12 1.19/0.3

Cr�/6MgO (1) (3.3�/10�4 s�1 strain rate) 163 323 9.5

Cr�/6MgO�/1Ti (4) 1979/15 3349/14 59/1

Cr�/6MgO�/2.2Ti (3) 3189/31 3569/17 19/0.4

Cr�/6MgO�/0.75Ti (5) (hot-pressed/extruded) 2279/11 3819/16 109/3

Cr�/6MgO�/0.75Ti (1) (hot-pressed/extruded) (3.3�/10�4 s�1 strain rate) 178 383 18.4

Scruggs Cr�/6MgO�/0.5Ti (3) (sintered/extruded) 2479/7 3339/23 89/2

Cr�/6La2O3 (2) �/ 3969/12 0

Cr�/6La2O3 (3) (0.5% compressive prestrain) �/ 4179/28 0

Cr�/6TiO2 (2) �/ 2439/16 0

Cr�/6TiO2 (3) (1.5% compressive prestrain) �/ 2569/10 0

Cr�/6Y2O3 (2) �/ 2849/20 0

Samples consolidated by hot-pressing at 1600 8C for 2 h unless otherwise noted.

M.P. Brady et al. / Materials Science and Engineering A00 (2003) 1�/12 3
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/182 /(tensile data included for 1 wt.% Ti only), and the

/183 /addition of 2.2 wt.% Ti significantly increased the yield

/184 /strength with a reduction in tensile elongation to �/1%.

/185 /Similar tensile elongations to that exhibited by the
/186 /original Scruggs alloy were, however, achieved after

/187 /extruding hot-pressed material with tensile elongation in

/188 /the range of 10% exhibited by a hot-pressed and

/189 /extruded Cr�/6MgO�/0.75Ti alloy (Table 2).

/190 / Several additional experiments were conducted to

/191 /determine if the MgO-dispersed Cr alloys exhibit the

/192 /classic strain rate sensitivity and notch sensitivity

/193 /behaviors typical for BCC metals such as Cr [1]. An
/194 /order of magnitude reduction in tensile strain rate (from

/195 /3.3�/10�3 to 3.3�/10�4 s�1) resulted in a near

/196 /doubling of the room temperature tensile elongation

/197 /(Table 2), with elongation of a hot-pressed Cr�/6MgO

/198 /sample to 9.5% and a hot-pressed and extruded Cr�/

/199 /6MgO�/0.75Ti sample to 18.4%. Yield strengths of

/200 /both alloys were moderately lower, as would be expected

/201 /with a lower strain rate. This strain rate is comparable to
/202 /that used in the original Scruggs work, which employed

/203 /a rate of 1�/10�4 s�1 for the first 0.4% of elongation

/204 /and then increased to 1�/10�3 s�1, and matches the

/205 /20% range level of tensile elongation originally reported

/206 /[5,7]. However, a surface finish change from 600 to 180

/207 /grit was found to reduce the tensile elongation in the

/208 /Scruggs alloy (tested at 3.3�/10�3 s�1 strain rate) from

/209 /8 to �/2%, indicating that notch sensitivity is reduced at
/210 /room temperature but not completely eliminated by the

/211 /addition of MgO. Fracture was predominately cleavage-

/212 /type in all cases, regardless of the surface finish or the

/213 /extent of tensile elongation.

/214 / For comparative purposes, hot-pressed Cr�/6X (wt.%)

/215 /alloys (X�/La2O3, TiO2, or Y2O3) were made to survey

/216 /the effectiveness of alternative oxide dispersions. The

/217 /La2O3 was selected because, like MgO, it exhibits a
/218 /higher coefficient of thermal expansion (CTE) than that

/219 /of Cr and would be expected to produce a similar local

/220 /stress field on consolidation with Cr, the TiO2 because it

/221 /exhibits a lower CTE than Cr and is relatively soft like

/222 /MgO, and Y2O3 because of its current use in oxide-

/223 /dispersed Cr alloys (e.g. Cr�/5Fe�/1Y2O3 [12]). Spinel

/224 /phases analogous to MgCr2O4 do not exist in the La�/

/225 /Cr�/O, Ti�/Cr�/O, or Y�/Cr�/O ternary systems.
/226 / All of the hot-pressed Cr�/6X alloys exhibited brittle

/227 /tensile behavior at room temperature, with no measur-

/228 /able plastic tensile elongation (Table 2). The Cr�/6Y2O3

/229 /and, particularly, the Cr�/6La2O3 were, however, sig-

/230 /nificantly stronger than the Cr�/MgO alloys, while the

/231 /Cr�/6TiO2 alloy exhibited comparable strength to the

/232 /Cr�/MgO alloys. Several tensile samples of hot-pressed

/233 /Cr�/6La2O3, Cr�/6TiO2, and Cr�/6MgO were also man-
/234 /ufactured from material that was compressively pre-

/235 /strained 0.5�/1.5% at room temperature (Table 2). No

/236 /effect of prestrain on the tensile properties of Cr�/

/237 /6La2O3 and Cr�/6TiO2 was evident, and they exhibited

/ 238/similar fracture strengths as without prestraining, again

/ 239/without yielding. Prestrain of Cr�/6MgO increased the

/ 240/yield strength by �/50 MPa, but reduced tensile

/ 241/elongation to �/ 1%.

/ 242/3.2. Microstructure

/ 243/3.2.1. Original Scruggs Cr�/6MgO�/0.5Ti alloy

/ 244/ The microstructure of the original Scruggs sintered

/ 245/and extruded Cr�/6MgO�/0.5Ti alloy (Fig. 1) consisted

/ 246/of a nominally pure Cr matrix with aligned bands of

/ 247/MgO and quaternary Mg�/Cr�/Ti oxide of composition

/ 248/15Mg�/40Cr�/10Ti�/35O (wt.%) {16Mg�/20Cr�/58O�/6Ti

/ 249/(atomic percent, at.%)}, consistent with a spinel on the
/ 250/MgCr2O4�/Mg2TiO4 tie line of approximate composi-

/ 251/tion 2MgCr2O4 �/ Mg2TiO4. No Cr�/nitrides or other

/ 252/impurity phases, with the exception of a few isolated

/ 253/examples of Cr carbides, were evident in the micro-

/ 254/structure by SEM LV-EDS spectrum imaging. A similar

/ 255/microstructure was also observed for the hot-pressed

/ 256/and extruded Cr�/6MgO�/0.75 Ti alloy.

/ 257/ Examination of the spinel phase for N was pursued to
/ 258/evaluate the nitrogen gettering mechanism proposed by

/ 259/Scruggs. Scruggs estimated 0.75�/1 wt.% N was incor-

/ 260/porated into the spinel phase in N-charged Cr�/

/ 261/6MgAl2O4 spinel alloys based on EPMA and mass

/ 262/spectrometer measurements as well as microscopic

/ 263/examination for the appearance of nitride precipitates

/ 264/in the Cr matrix as a function of bulk N content [6].

/ 265/However, the high concentration of Ti in the spinel
/ 266/phase in the Scruggs Cr�/6MgO�/0.5Ti alloy examined in

/ 267/the present work complicated the identification of small

/ 268/concentrations of N by EPMA because of the peak

/ 269/overlaps between the N�/K and Ti�/L lines. The speci-

/ 270/mens were therefore analyzed by EELS in the TEM.

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:12

Fig. 1. SEM cross-section micrograph of the Scruggs sintered and

extruded Cr�/6MgO�/0.5Ti wt.% alloy. The light particles are the

spinel phase and the dark particles unreacted MgO.
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/271 / Representative raw EELS spectra for the Cr matrix,

/272 /MgO, and spinel phases are shown in Fig. 2a. Char-

/273 /acteristic edges for N�/K, Ti�/L, O�/K, and Cr�/L are

/274 /located within this region of the spectrum, as indicated;

/275 /no characteristic edge for Mg is present. The spectra

/276 /demonstrate a pronounced enrichment of Ti (consistent

/277 /with the EPMA analysis), but no visible evidence of N,

/278 /in the spinel phase. Second-difference spectra, formed to

/279 /enhance the signal-to-background of the characteristic

/280 /edges, are shown in Fig. 2b, as acquired from two

/281 /different spinel particles (a total of six spinel particles

/282 /were analyzed). Features in the region of the spectrum

/283 /containing the characteristic N�/K edge are magnified

/284 /by a factor of 200 in Fig. 2b. Spectral oscillations in this

/285 /N region of the spectrum are consistent with the

/286 /background noise level.

/287 / Assuming N gettering by the spinel phase would

/288 /result in a concentration enhancement similar to the 20-

/289 /fold enhancement observed for Ti in the spinel phase in

/290 /the Scruggs Cr�/6MgO�/0.5Ti alloy, relative to the bulk

/291 /composition of the alloy (10 wt.% Ti in the spinel vs. 0.5

/292 /wt.% bulk), the concentration of N in the spinel would

/293 /be expected to be in the range of �/0.6 wt.% (20 times

/294 /the bulk level of �/0.03 wt.% N; Table 1). This is a

/295 /factor of �/50 smaller than that of the oxygen in the

/ 296/spinel phase, �/35 wt.% O (i.e. 2% of the anions; refer to

/ 297/O signal shown in Fig. 2b). Such a concentration would

/ 298/result in a N signal several times the noise level in Fig.

/ 299/2b, which is not observed. Therefore, the EELS mea-
/ 300/surements showed no evidence of significant gettering of

/ 301/N within the spinel phase.

/ 302/ Atom probe was used to examine the degree to which

/ 303/N was present as a trace element solute in the Cr matrix

/ 304/in the Scruggs alloy. These atom probe measurements

/ 305/did not indicate the presence of N in the Cr matrix, to

/ 306/within the detection limit of the measurement, estimated

/ 307/to be 20 atom parts per million nitrogen (5 wppm) for
/ 308/the sampling of 100,000 atoms. Similar atom probe

/ 309/results were also obtained for a Cr�/0.5Ti alloy exam-

/ 310/ined for comparative purposes. The Cr matrix N levels

/ 311/were therefore at least 1�/2 orders of magnitude lower

/ 312/than the bulk N levels (�/0.03 wt.%; Table 1), which

/ 313/indicates that the N impurities were not (uniformly at

/ 314/least) concentrated principally in the matrix.

/ 315/ The presence and location of N (and other impurities)
/ 316/in the microstructure of the Scruggs alloy were, how-

/ 317/ever, revealed by in-situ fracture studies in the SAN.

/ 318/Levels of 12�/20 at.% N and 10�/17 at.% S were detected

/ 319/in pit regions of the fracture surface where oxide

/ 320/particles had been pulled out as shown in the maps in

/ 321/Fig. 3. Similar to the situation with EPMA analysis, N

/ 322/cannot be definitively identified by Auger analysis in

/ 323/microstructural regions where Ti is also locally present
/ 324/due to peak overlaps. The oxide pullout regions marked

/ 325/by arrows in Fig. 3 are locations where no Ti was locally

/ 326/detected-thus the presence of nitrogen at this location

/ 327/could be unambiguously identified. It was not possible

/ 328/to tell whether these sites had held MgO or spinel

/ 329/particles.

/ 330/ Potentially three distinct types of oxide particles,

/ 331/protruding from the fracture surface, were also identi-
/ 332/fied: MgO and two types of Mg�/Cr�/O base particles,

/ 333/which most likely corresponded to the spinel phase and

/ 334/MgO partially reacted with Cr. The presence of Ca (7�/

/ 335/15 at.%), C (5�/10 at.%), N (3�/7 at.%), Ti (B/5 at.%),

/ 336/and S (B/2 at.%) were detected at these Mg�/Cr�/O

/ 337/particle surfaces, where the concentration of N at these

/ 338/particle surfaces may be overestimated due to the

/ 339/aforementioned peak overlap issues with Ti. No impu-
/ 340/rities were detected at the MgO particle surfaces;

/ 341/however the absence of impurities here may be an

/ 342/artifact of where the fracture occurred, i.e. the sampled

/ 343/area may have been from within the particle rather than

/ 344/from the original MgO surface j Cr matrix interface.

/ 345/Measurements in the Cr matrix regions of the fracture

/ 346/surface ranged from essentially pure Cr to areas that

/ 347/contained significant levels of C and O impurities, up to
/ 348/25 at.% each at one site. The areas with high levels of C

/ 349/and O most likely corresponded to grain boundary

/ 350/regions revealed by the fracture, however the primary

/ 351/fracture was transgranular cleavage.

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:13

Fig. 2. EELS analysis of the sintered and extruded Scruggs Cr�/

6MgO�/0.5Ti alloy. (a) Raw data; (b) second difference spectra for

two different spinel particles with different t /l values (t is sample

thickness and l is inelastic mean free path). Spectral variations in the

vicinity of the N edge were uncorrelated between the two second

difference spectra, indicating noise.
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/352 /3.2.2. Cr�/MgO alloys of the present work

/353 / The microstructures of the hot-pressed Cr�/MgO

/354 /alloys of the present work were comparable to that of

/355 /the Scruggs alloy, although occasional large (�/50 mm)

/356 /agglomerations of MgO/MgCr2O4 particles were ob-

/357 /served in hot-pressed alloys (Fig. 4a), but were generally

/358 /absent in the sintered and extruded Scruggs alloy and

/359 /the hot-pressed and extruded Cr�/6MgO�/0.75Ti alloy.

/360 / Particles of MgO and a ternary Mg�/Cr�/O phase were

/361 /present at the Cr-matrix grain boundaries in hot-pressed

/362 /Cr�/6MgO (Fig. 4a). The composition of the ternary

/363 /oxide phase was determined by EPMA to be �/12Mg�/

/364 /52Cr�/36O wt.% (�/13Mg�/27Cr�/60O at.%), consistent

/365 /with the MgCr2O4 spinel phase. Nitrogen was not

/366 /detected in the spinel phase to within the sensitivity

/367 /limits of the EPMA analysis, estimated to be �/0.05

/368 /wt.% in the present work, which is on the order of the

/ 369/bulk level of 0.03 wt.% N in this alloy (Table 1) and an

/ 370/order of magnitude less than the expected level of 0.6

/ 371/wt.% if spinel phase N gettering had occurred (this alloy

/ 372/was Ti-free and presented no peak overlap issues for N

/ 373/detection). However, the presence of Cr�/nitrides in the

/ 374/hot-pressed Cr�/6MgO was detected in LV-EDS spec-

/ 375/trum imaging (Fig. 4b). The nitrides were relatively

/ 376/coarse and blunt, typically located adjacent to/cupped

/ 377/around the MgO and MgCr2O4 particles rather than

/ 378/directly on the grain boundaries. Other impurity phases,

/ 379/notably Cr�/sulfides and Cr�/carbides, were also evident,

/ 380/again relatively coarse and typically located at the MgO/

/ 381/MgCr2O4 particles.

/ 382/ A similar microstructure was observed for the hot-

/ 383/pressed Cr�/6MgO�/0.5Ti and Cr�/6MgO�/1Ti alloys,

/ 384/including impurity phase precipitates primarily at MgO/

/ 385/MgCr2O4 particles, except that the spinel phase con-

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:14

Fig. 3. SAN analysis of in-situ fractured Scruggs Cr�/6MgO�/0.5Ti alloy. Arrows mark oxide dispersion pull-out regions where N is detected in the

absence of Ti. (a) Secondary mode SEM; (b) sulfur map; (c) oxygen map; (d) nitrogen map; (e) titanium map
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/386 /tained significant quantities of Ti, as was observed for

/387 /the Scruggs Cr�/6MgO�/0.5Ti alloy. In the Cr�/6MgO�/

/388 /2.2 wt.% Ti alloy, a ternary Mg�/Ti�/O phase with less

/389 /than 1 at.% Cr, rather than MgCr2O4 base spinel, was

/390 /present. A range of compositions were measured in the

/391 /Mg�/Ti�/O phase regions, varying between 10�/30 at.%

/392 /each of Mg and Ti, suggestive of areas of partial and

/393 /complete reaction of MgO and Ti/TiO2 to form

/394 /Mg2TiO4 spinel. Levels of 1�/1.5 at.% Ti were also

/ 395/detected in the Cr matrix, which likely contributed to the

/ 396/increased yield strength of this alloy (Table 2) via solid

/ 397/solution hardening.

/ 398/ Analysis of in-situ fractured hot-pressed Cr�/6MgO in
/ 399/the SAN revealed similar findings to those observed in

/ 400/the Scruggs alloy. In pit regions in the fracture surface

/ 401/where MgO/MgCr2O4 particles had been pulled out, N

/ 402/levels of 10�/25 at.%, S levels of 5�/15 at.%, and,

/ 403/occasionally, C and Ca levels generally less than 10

/ 404/at.% were detected. Sputtering of the fracture surface at

/ 405/a rate of �/0.1 nm min�1 (calibrated from SiO2)

/ 406/decreased the concentration of N and S impurities
/ 407/detected in a pit region from the 10�/20 at.% range to

/ 408/less than 2 at.% after 5 min of sputtering. Impurities

/ 409/were also detected at the surfaces of spinel phase

/ 410/particles, typically less than 5�/8 at.% each of C and S,

/ 411/with Ca and N also occasionally detected.

/ 412/3.2.3. Unalloyed Cr and Cr�/0.5Ti alloys

/ 413/ The microstructure of the hot-pressed, unalloyed Cr

/ 414/control is shown in Fig. 5a. The grain size was on the
/ 415/order of 0.5 mm, an order of magnitude coarser than the

/ 416/ �/50 mm grain size present in hot-pressed Cr�/6MgO

/ 417/base alloys (e.g. Fig. 4a), and approaching the 0.6�/0.7

/ 418/mm thickness of the tensile samples. The alloy contained

/ 419/a high volume fraction of second phases, primarily

/ 420/Cr2O3, distributed throughout the microstructure. LV-

/ 421/EDS spectrum imaging revealed the presence of coarse,

/ 422/acicular Cr�/nitrides and Cr�/carbides at grain bound-
/ 423/aries (Fig. 5b). A similar coarse grain size and acicular

/ 424/grain boundary Cr�/nitrides were also observed in Cr�/

/ 425/0.5Ti. SAN analysis indicated the presence of N (15�/20

/ 426/at.%), S (13�/18 at.%), P (10�/20 at.%), and C (B/5 at.%)

/ 427/at pit regions in the fracture surface of the hot-pressed

/ 428/unalloyed Cr where pull out of the Cr2O3 inclusions

/ 429/occurred (Fig. 6). At the surface of the Cr2O3 inclusions,

/ 430/S (8�/18 at.%), C (5 at.%), Ca (5�/8 at.%), and P (3�/5
/ 431/at.%) were detected.

/ 432/3.2.4. Other oxide dispersions

/ 433/ The microstructure of the hot-pressed Cr�/6TiO2 was

/ 434/qualitatively similar to that observed for hot-pressed

/ 435/Cr�/6MgO, while a comparable Cr-matrix grain size but

/ 436/much finer oxide particle size was observed in the Cr�/

/ 437/6La2O3 and 6Y2O3 alloys (Fig. 7). Isolated areas of very
/ 438/large (]/100�/200 mm) oxide dispersion agglomerations

/ 439/were also present in the Cr�/6TiO2 alloy. Approximately

/ 440/2 at.% Cr was detected in the Y2O3 dispersions in the

/ 441/Cr�/6Y2O3 alloy (2Cr�/43Y�/55O at.%), while the La2O3

/ 442/and TiO2 reacted extensively with the Cr/Cr2O3 during

/ 443/powder consolidation to form ternary phases of average

/ 444/composition 22Cr�/20La�/58O at.%, consistent with the

/ 445/LaCrO3 phase, and 16Cr�/24Ti�/60O at.%, respectively.
/ 446/(A number of complex ternary Ti�/Cr�/O phases exist

/ 447/[17] and an exact determination of the phase formed in

/ 448/the Cr�/6TiO2 alloy was not made.) EPMA analysis

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:16

Fig. 4. Microstructure of hot-pressed Cr�/6MgO. (a) SEM cross-

section micrograph: MgCr2O4 spinel (light particles), MgO (dark

particles). Occasional large particle agglomeration such as that marked

by arrows was present. (b) LV-EDS spectrum image phase map of a

MgO/MgCr2O4 particle dispersion area.
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/449 /showed no evidence of La, Ti, or Y incorporation into

/450 /the Cr matrix. Cr�/nitride and Cr�/sulfide impurity

/451 /phases, primarily adjacent to oxide dispersions, were

/452 /observed in Cr�/6TiO2 and Cr�/6Y2O3 (not examined in

/453 /Cr�/6La2O3), similar to those for hot-pressed Cr�/

/454 /6MgO; a typical phase distribution is shown in Fig. 8

/455 /for the Cr�/6TiO2 alloy. Further, SAN analysis of in-situ

/456 /fractured Cr�/6Y2O3 also showed N and S impurity

/457 /segregation at oxide pull-out regions in the fracture

/458 /surface (typically 10�/15 at.% each), again similar to that

/459 /observed in the Cr�/6MgO and related alloys.

/ 460/3.3. Implications

/ 461/ The direct preferential incorporation of N into the

/ 462/MgCr2O4 spinel phase formed during consolidation of
/ 463/MgO and Cr/Cr2O3 powders, as postulated by Scruggs

/ 464/[5,6], was not detected by EELS analysis of the spinel

/ 465/phase in the original Scruggs Cr�/6MgO�/0.5Ti alloy or

/ 466/by EPMA analysis of the spinel phase in the hot-pressed

/ 467/Cr�/6MgO control alloy. Nitrogen and other impurities

/ 468/were, however, observed as segregants at MgO/

/ 469/MgCr2O4 oxide-dispersion j Cr matrix interfaces in the

/ 470/Scruggs alloy and in hot-pressed Cr�/6MgO by SAN
/ 471/analysis. However, the exact chemical form of that

/ 472/segregation remains to be determined. Further, in hot-

/ 473/pressed Cr�/6MgO and Cr�/6MgO�/1Ti, Cr�/nitride and

/ 474/Cr�/sulfide impurity phases were also observed adjacent

/ 475/to MgO/MgCr2O4 oxide dispersions in SEM LV-EDS

/ 476/spectrum images. Collectively, the observed pattern of

/ 477/impurity distribution is consistent with the global

/ 478/hypothesis of Scruggs that the addition of MgO to Cr
/ 479/affects the distribution of impurities in Cr, but, in

/ 480/contrast to Scrugg’s postulation, it does not appear to

/ 481/occur by direct incorporation into the spinel phase.

/ 482/ These findings are consistent with those of Bakun et

/ 483/al. [18], who linked Cr matrix and grain boundary

/ 484/purification in sintered and extruded Cr�/5MgO (0.06

/ 485/wt.% C and 0.007 wt.% N) to precipitation of impurity

/ 486/inclusions, likely Cr23C6, at MgO j Cr matrix interfaces.
/ 487/They noted ‘diffuse’ contrast by TEM imaging at grain

/ 488/boundaries in unalloyed recrystallized Cr, associated

/ 489/with segregation of interstitial impurities or very fine

/ 490/interstitial phase precipitates (20�/40 nm), as compared

/ 491/to ‘banded’ contrast in Cr�/5MgO, consistent with

/ 492/‘clean’ grain boundaries. However, in the present work

/ 493/impurity segregation was also observed at Cr2O3 inclu-

/ 494/sion sites in hot-pressed unalloyed Cr (Fig. 6) and at
/ 495/Y2O3 dispersion sites in the hot-pressed Cr�/6Y2O3

/ 496/alloy. Additionally, Cr-nitride and Cr�/sulfide impurity

/ 497/phase precipitation was observed at complex (non-

/ 498/spinel) Ti�/Cr oxide dispersions in Cr�/6TiO2 (Fig. 8)

/ 499/and at Y2O3 dispersions in Cr�/6Y2O3. Therefore, the

/ 500/observed impurity segregation/precipitation does not

/ 501/appear to be unique to, or a special property of spinel

/ 502/phase dispersions in Cr.
/ 503/ This is a key finding because it suggests that efforts to

/ 504/improve the mechanical properties of Cr�/MgO and

/ 505/related alloys from an impurity management standpoint

/ 506/do not need to focus on optimization of spinel phase

/ 507/formation during powder consolidation to promote

/ 508/gettering of impurities. Further, it opens up the possi-

/ 509/bility for the use of other (non spinel) oxide dispersions

/ 510/to provide internal interfaces for impurities to segregate
/ 511/to/precipitate at in Cr. However, although impurity

/ 512/segregation and precipitation were also observed in hot-

/ 513/pressed Cr�/6La2O3, Cr�/6TiO2 and Cr�/6Y2O3 alloys,

/ 514/these alloys were brittle under tensile loading at room

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:42

Fig. 5. Microstructure of hot-pressed unalloyed Cr. (a) optical (light

microscopy) cross-section (oxalic etch); (b) LV-EDS spectrum image

phase map of grain boundary area.
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Fig. 6. SAN analysis of in-situ fractured hot-pressed unalloyed Cr. (a) Secondary mode SEM; (b) sulfur map; (c) nitrogen map.

Fig. 7. Optical (light microscopy) cross-section of hot-pressed (a) Cr�/6La2O3, (b) Cr�/6TiO2, (c) Cr�/6Y2O3 and (d) Cr�/6MgO (oxalic etch). Note

that the intragranular features are an etching artifact.
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/515 /temperature. Clearly, factors other than impurities must

/516 /play a major role in determining whether an oxide

/517 /dispersion is successful in ductilizing Cr at room

/518 /temperature.

/519 / The introduction of fine dispersions has been postu-

/520 /lated to improve ductility in bcc metals such as Cr by

/521 /acting as a mobile dislocation source, decreasing the

/522 /effective slip plane length, or reducing dislocation pile

/523 /ups at grain boundaries [2,19]. Surface oxide softening

/524 /has been reported in bcc metals as well at low homo-

/525 /logous temperatures by generation of non-screw dis-

/526 /locations [20�/22]. It is not yet clear if these types of

/527 /mechanisms play a major role in the ductilization of Cr

/528 /by MgO additions. Based on the absence of an effect of

/529 /room temperature compressive prestrain on tensile

/530 /properties of the Cr�/6La2O3 and Cr�/6TiO2 alloys,

/531 /and the detrimental effect of compressive prestrain on

/532 /tensile elongation of Cr�/6MgO (Table 2), other factors

/533 /may supercede the importance of mobile dislocation

/534 /initiation for achieving tensile elongation in these alloys.

/535 /Other dispersions, most notably ThO2 [2], TaC [23], and

/536 /TiN [24] have been reported to result in ductility of Cr at

/537 /room temperature, although it is important to note that

/538 /these effects were observed with electropolished surfaces

/539 /and with cold work [2] or in bend, and not tensile, tests

/540 /[23,24]. Scruggs also demonstrated a beneficial effect

/541 /with the direct addition of MgAl2O4 spinel to Cr [5�/7];

/542 /however, the available data suggest that it was not as

/543 /effective at ductilizing Cr as MgO and that the BDTT

/544 /was above room temperature.

/545 / The observation of Cr nitride and other impurity

/546 /phase precipitates in the hot-pressed Cr�/6MgO and Cr�/

/547 /6MgO�/1Ti alloys was surprising given that these alloys

/ 548/showed �/4% tensile elongation at room temperature

/ 549/(Fig. 4). The coarse, blunt morphology of these phases

/ 550/and their location primarily at MgO/MgCr2O4 particles

/ 551/rather than directly along grain boundaries is thought to

/ 552/help ameliorate their detrimental effects on mechanical

/ 553/properties. The size and morphology of Cr�/nitride

/ 554/precipitates have been reported to influence the BDTT

/ 555/of Cr [1], with coarser precipitates, typically formed

/ 556/during slow cooling, as was the case for the hot-press

/ 557/consolidation in the present work, being less detrimental

/ 558/than finer precipitates. The Cr matrix grain size of the

/ 559/Cr�/6MgO base alloys was also significantly finer than

/ 560/the unalloyed Cr and Cr�/0.5Ti control alloys, which

/ 561/may also have contributed to the improved ductility of

/ 562/these alloys. However, similar coarse impurity precipi-

/ 563/tates and fine Cr grain sizes were also observed in the

/ 564/Cr�/ 6La2O3, 6TiO2, and 6Y2O3 alloys, which did not

/ 565/exhibit any tensile elongation at room temperature;

/ 566/therefore, these are likely secondary rather than primary

/ 567/factors in determining whether a dispersion is effective

/ 568/in ductilizing Cr.

/ 569/ The presence of any oxide (or other ceramic) disper-

/ 570/sion can embrittle Cr at room temperature by acting as

/ 571/local notches, crack initiation sites, or increasing the

/ 572/yield strength relative to the cleavage strength [2], such

/ 573/that the BDTT is raised to above room temperature.

/ 574/These effects can supercede/negate any beneficial effects

/ 575/the dispersions may also have, such as acting as a sink

/ 576/for impurities in the microstructure, and are speculated

/ 577/to be a key factor in the ductilization mechanism. For

/ 578/example, all of the oxide dispersions examined in the

/ 579/present work increased yield strength relative hot-

/ 580/pressed, unalloyed Cr (Table 2), however the increase

/ 581/was much less for MgO additions than for Y2O3 and,

/ 582/especially, La2O3 additions (e.g. yield strength of 219

/ 583/MPa for hot-pressed Cr�/6MgO vs. fracture strength of

/ 584/396 MPa, without yielding, for Cr�/6La2O3, Table 2).

/ 585/The mechanical properties of the dispersion, the nature

/ 586/of the dispersion j metal matrix interface, and the size/

/ 587/distribution/location of the dispersions all play a major

/ 588/role in the resultant mechanical properties of the alloy

/ 589/composite [25,26]. The processing conditions and com-

/ 590/positions employed in the present work were based on

/ 591/the Scruggs Cr�/MgO work [5�/7] and are unlikely to

/ 592/reflect optimal microstructures for the La2O3, TiO2, or

/ 593/Y2O3 additions. Preliminary efforts at optimization

/ 594/have yielded a Cr�/2TiO2 wt.% alloy that exhibited a

/ 595/small amount of tensile elongation at room temperature,

/ 596/1.49/1% (hot-pressed 1600 8C for 2 h, yield strength of

/ 597/2109/27 and fracture strength of 2669/10 MPa, three

/ 598/samples tested). A detailed understanding of the specific

/ 599/factor(s) that led to the inability of the Cr�/6La2O3, Cr�/

/ 600/6TiO2 and Cr�/6Y2O3 alloys to exhibit comparable

/ 601/tensile elongations to the Cr�/6MgO alloys at room

/ 602/temperature is the subject of ongoing efforts.

Y:/Elsevier Science/Shannon/MSA/articles/Msa16565/Msa16565.3d[x] 15 May 2003 14:0:59

Fig. 8. LV-EDS spectrum image phase map of oxide dispersion region

in hot-pressed Cr�/6TiO2.
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/603 / The hot-pressed and extruded Cr�/6MgO�/0.75Ti

/604 /alloy exhibited twice the tensile elongation of the hot-

/605 /pressed Cr�/6MgO�/(0�/1)Ti alloys (Table 2). The in-

/606 /creased elongation is primarily attributed to the physical
/607 /breakup of occasional, large agglomerations of MgO/

/608 /MgCr2O4 particles, which were more prevalent in hot-

/609 /pressed material (e.g. Fig. 4a), by the extrusion treat-

/610 /ment. The tensile axis was also aligned with the

/611 /extrusion direction, and texture/grain size effects result-

/612 /ing from this may also have also played a role in the

/613 /increased elongation relative to hot-pressed material.

/614 /Interestingly, impurity phase precipitates (nitrides, car-
/615 /bides, or sulfides), which were observed in hot-pressed

/616 /material, were rarely observed in the Scruggs sintered

/617 /and extruded alloy or the hot-pressed and extruded Cr�/

/618 /6MgO�/0.75Ti alloy. The elimination of these precipi-

/619 /tates during the extrusion treatment by a greater

/620 /segregation (gettering) of impurities to oxide disper-

/621 /sion j Cr interfaces could also contribute to the im-

/622 /proved ductility of the extruded material. For example,
/623 /Cr starts to exhibit appreciable nitrogen solubility above

/624 /1000 8C and the extrusions were performed in the

/625 /1200�/1300 8C range. However, the possibility that

/626 /cracking of the impurity phase precipitates during

/627 /extrusion made them more difficult to retain during

/628 /metallographic preparation cannot be ruled out.

/629 /4. Summary

/630 / (1) The addition of 6 wt.% MgO to commercial-grade

/631 /Cr (high levels of N, S, O, and C impurities) resulted in

/632 / �/4% tensile elongation at room temperature in hot-

/633 /pressed alloys and �/10% elongation in hot-pressed/

/634 /extruded alloys, with a surface finish of 600 grit and a

/635 /strain rate of 3.33�/10�3 s�1. The alloys were notch

/636 /and strain rate sensitive at room temperature, with
/637 /decreased tensile elongation with a coarser surface finish

/638 /and increased tensile elongation with decreased strain

/639 /rates.

/640 / (2) Direct incorporation of N and other impurities

/641 /into the MgCr2O4 spinel phase, which forms during

/642 /consolidation of the Cr and MgO powders and was

/643 /originally postulated to be the mechanism of impurity

/644 /management in these alloys, was not detected. However,
/645 /N, S, C, and other alloy impurities were observed to

/646 /segregate to, and in some cases precipitate at

/647 /MgO j MgCr2O4�/Cr matrix interfaces.

/648 / (3) The observed impurity segregation/precipitation

/649 /does not appear to be unique to spinel phase dispersions

/650 /in Cr, as similar impurity segregation and precipitation

/651 /were also observed at oxide dispersions in hot-pressed

/652 /Cr�/6X wt.% alloys (X�/La2O3, TiO2, or Y2O3), as well
/653 /as at Cr2O3 inclusions in unalloyed Cr. However, all of

/654 /the Cr�/6X alloys were brittle in tension at room

/655 /temperature. Factors beyond impurity management

/ 656/must therefore play a major role in determining whether

/ 657/an oxide dispersion is effective in ductilizing Cr. These

/ 658/factors were speculated to include the degree to which

/ 659/the dispersion/resultant dispersed microstructure may
/ 660/act as notches/crack initiation sites or raise the yield

/ 661/stress of the alloy, superceding any beneficial effects the

/ 662/dispersions may also have, such as acting as a sink for

/ 663/impurities.
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