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PLD pulsed-laser deposition
RABiTS™ rolling-assisted biaxially textured substrates
RBS Rutherford Backscattering Spectroscopy
RF radio frequency
RG&E Rochester Gas and Electric Company
rms root mean square
RTA rapid thermal annealer
SAD selected area diffraction
SEM scanning electron microscopy
STEM scanning transmission electron microscopy
SUNY State University of New York
Tc critical temperature/transition temperature
TEM transmission electron microscopy
TGA thermogravimetric analysis
WES Waukesha Electric Systems
XRD X-ray diffraction
YBCO yttrium barium copper oxide
YSZ yttria-stabilized zirconia
Z-STEM Z-contrast scanning transmission electron microscopy



xiii

Executive Summary

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as
part of a national effort by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable
Energy to develop the science and technology base needed by U.S. industry for commercial development
of electric power applications of high temperature superconductivity. The two major elements of this
program are wire development and applications development. This document describes the major research
and development activities for this program together with related accomplishments. The technical
progress reported was summarized from recent open literature publications, presentations, and information
prepared for the FY 1997 Annual Program Review held July 21–23, 1997. This ORNL program is highly
leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of
the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also
in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff
exchanges, and joint publications and presentations ensure that there is technology transfer with U.S.
industry. Working together, the collaborative teams are making rapid progress in solving the scientific and
technical issues necessary for the commercialization of long lengths of practical high temperature
superconductor wire and wire-using systems.
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Highlights for Fiscal Year 1997

& Critical current densities (Jcs) between 2 and 3 MA/cm2 (77 K, H = 0) have been achieved for thin
YBCO films on rolling assisted biaxially textured substrates (RABiTS™). The increase in Jc over
previous record values (1.2–1.4 × 106 A/cm2) is believed to be the result of close control of substrate
temperature during deposition and the use of thin oxide buffer layers, thus eliminating some
microstructural features that limit Jc, such as micro-cracks and pores. For this, all buffer layers were
deposited by industrially scalable electron beam (e-beam) evaporation or radio frequency (RF)
sputtering, and the YBCO was deposited by pulsed laser deposition (PLD).

& The high-temperature superconducting (HTS) cold mass subsystem [i.e., the Intermagnetics General
Corporation (IGC) primary and secondary HTS coils and the Oak Ridge National Laboratory
(ORNL)-designed and procured 77-K radiation shield, support plates, and cryogenic system] for the
1-MVA demonstration transformer was assembled, leak tested, and shipped to Waukesha in
September. ORNL has also tested an available cryocooler and loaned it to the project. In addition, the
tank vacuum system was completed, tested, and shipped. The liquid nitrogen reservoir for the 77-K
shield and the cryocooler heat exchanger were shipped directly to Waukesha from the manufacturers
in late July. S. W. Schwenterly visited the Waukesha plant for uncrating and testing of the cold mass
subsystem. The core has been assembled at Waukesha, and final assembly of the entire transformer is
under way. Final test plans for the cryogenic and vacuum systems are being completed at ORNL with
the balance of the test plans being prepared at Waukesha and IGC.

& The fifth cable in a series of prototype, 1-m uninsulated test samples was tested in collaboration with
Southwire Company. The prototype consisted of two pairs of oppositely wound BSCCO-2223 tapes
with the inner pair uninsulated between layers and the outer pair insulated between the layers by
Kapton tape. The ac losses were measured calorimetrically. As expected, the outer pair is the
predominant source of ac loss when both pairs carry current because the outer pair carries about 60%
of the ac current.

& A new buffer layer architecture was developed on textured nickel substrates using the e-beam
evaporation technique. Epitaxial laminates of MgO/Ag/Pt or MgO/Ag/Pd were deposited on biaxially
textured nickel foils. In-plane aligned MgO buffers deposited using the e-beam process may be an
industrially scalable alternative to laser-deposited films. The best in-plane alignment for MgO on Pd
was �11( full width half maximum (FWHM).

& Additional alternatives to PLD of buffer layers on textured nickel were developed. For this, an all
e-beam evaporation deposited, standard CeO2/yttria-stabilized zirconia (YSZ) architecture was
produced, mimicking the PLD architecture developed last year. In addition, a substrate with the
combination e-beam evaporation and sputtered YSZ buffer layers was also produced. YBCO films
grown on these substrates show comparable properties to the best YBCO films grown on all-PLD
buffered nickel.

& The first private sector demonstration of high Jc YBCO films on ORNL’s RABiTS™ was completed
by cooperative research and development agreement (CRADA) partner Midwest Superconductivity,
Inc. For this, Midwest deposited an �1-µm-thick film of YBCO on RABiTS™ using their metal-
organic, chemical vapor deposition process. The Jc of the 2.8-mm-wide sample was 640,000 A/cm2

(77 K), measured across the full sample width, and exceeds 1 million A/cm2 at 70 K. Moreover, the
field dependence of the Jc and the critical current (Ic) is as good as the films grown by PLD at ORNL.
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& A BaZrO3 (barium zirconium oxide) precursor solution was prepared by sol-gel synthesis through an
all-alkoxide route. The work is being done to determine the feasibility of growing epitaxial buffer
layers by sol-gel chemistry on metal substrates. The barium precursors were prepared by reacting
barium metal with 2-methoxyethanol, and zirconium precursors were prepared by exchanging ligands
between zirconium n-propoxide and 2-methoxyethanol. The resulting BaZrO3 precursor solution was
partially hydrolyzed and spin-coated on sapphire, SrTiO3 (strontium titanium oxide) (100), and
LaAlO3 (lanthanum aluminum oxide) (100) substrates. X-ray diffraction (XRD) studies showed the
presence of a single (100) cube texture for BaZrO3 films on SrTiO3 and LaAlO3 substrates. The
BaZrO3 film on SrTiO3 substrates had a sharp texture compared with that on LaAlO3 substrates. This
could be explained by the presence of a reduced lattice mismatch between the substrate and the film.

& Scale-up experiments are under way at ORNL, designed in part to provide longer lengths of
RABiTS™ for YBCO deposition at ORNL, Los Alamos National Laboratory (LANL), and Midwest
Superconductivity, Inc. Recently, 30-cm-long CeO2-buffered, textured-Ni substrates were fabricated
for the first time using a rotating cylinder in an e-beam evaporator. Also, we fabricated a RABiTS™
sample more than 6-cm long with a layer sequence of YSZ (1000 Å)/CeO2 (400 Å)/Ni (125 µm) in a
static mode in the e-beam system. Detailed XRD analysis on this long substrate showed that the
FWHM values for the top YSZ layers were 9–10( [in-plane epitaxy; (202) 1 scan] and 6–7( [out-of-
plane epitaxy; (002) 7 scan].

& A test apparatus has been constructed for testing tape dielectric samples in air and liquid nitrogen at
1 atm pressure. The test rig was designed at ORNL with an International Electric Commission (IEC)
standard as a guide and was fabricated at Southwire. Checkout of the test set has begun, and
preliminary tests of several dielectric materials have been done using dc and ac voltages. The design
and assembly of a high pressure cryogenic test system for sheet dielectrics is also proceeding.
Chamber support plates have been designed and fabricated. Design of the electrode assembly is under
way. A low noise ac power supply has been ordered that will allow low level partial discharge
measurements to be conducted and improved voltage control for ac breakdown.

& YBa2Cu3O7� films grown on RABiTS™ carry critical current densities 105 to 106 A/cm2 at 77 K and
low applied magnetic fields. In the low-field and low-current regime, ac transport current studies show
hysteresis energy loss (per cycle and per unit length) roughly the value expected for a superconductor
of elliptic cross section. The Ic was deduced from observed dc and dynamic current–voltage relations.
The power loss rises sharply as I0 (the maximum current in each cycle) is raised above Ic. In the
present configuration, ferromagnetic hysteresis of the Ni substrate contributes little or no loss.

& In a collaborative project with the University of Tennessee Space Institute, a dip-coating unit was
assembled at ORNL for application of LaAlO3 sol-gel alkoxide precursors on SrTiO3 single crystal
substrates. Detailed XRD studies indicated the formation of epitaxial LaAlO3 films with a single cube-
on-cube texture. A complex matrix of 20 different sets of growth conditions was needed to grow the
films, thus providing data for future work on RABiTS™ and long-length substrates.

& High Ic Y-123 films were grown on a RABiTS™ using e-beam evaporation exclusively for the
ultrathin buffer layers. For this, YBa2Cu3O7�y coated conductors were fabricated with a layer sequence
of YBCO/YSZ/CeO2 /Ni. The cube (100) texture in the starting Ni substrates was obtained by cold-
rolling followed by recrystallization. The CeO2 (cerium oxide) and YSZ films were grown epitaxially
on the textured-Ni substrates using an e-beam evaporation technique. The total thickness of the buffer
layer was 1500 Å. The YBCO films were then grown by PLD. The biaxial texture in the YBCO layer
was over 90%. A transport Ic of 1.0 × 106 A/cm2 at 75 K was obtained on a 0.76-µm-thick YBCO film
in zero field.
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& We have investigated several systematics regarding the superconductive transport properties of YBCO
epitaxial deposits on RABiTS™. The focus of the effort was to make a comparative study of the field-
and temperature-dependent Jc among different YBCO/RABiTS™ samples and with properties of the
“benchmark” materials deposited on SrTiO3. In addition, a preliminary test of the bend-strain
tolerance was conducted, both in compression and tension, and an assessment was made of the
prospects for achieving practical current levels through this type of coated-conductor approach.
YBCO films can be routinely obtained on RABiTS™ with Jc (77 K) > 0.5 MA/cm2 and only one in-
plane orientation when CeO2 is utilized to eliminate secondary in-plane orientations. These data show
that not only is YBCO the HTS material of choice for conductor applications, but also that the high-
field properties of YBCO/RABiTS™ may exceed those of the prototype, YBCO/SrTiO3 films. For
YBCO thicknesses of ~1–3 µm, the Jc (1 T) exhibits no systematic thickness dependence, with values
in the range ~100–150 kA/cm2 at 64 K. Even though the present structures have a small
superconductor fraction, the data at 64 K suggest that practical levels are accessible in the liquid
nitrogen temperature range.

& Epitaxial buffer layers of NdAlO3, GdAlO3, YAlO3, and SrTiO3 have been grown on single crystal
substrates using a sol-gel technique. �-2� scans of the films indicate c-axis preferred orientation, and
pole figure analyses verify single cube-on-cube epitaxy. FWHM values of the rocking curve and 1

scans are between 1 and 4o.

& IGC has delivered the HTS coils for the 1-MVA transformer to ORNL. The coils are constructed
using several kilometers of IGC’s low-cost, surface-coated BSCCO-2212 material. The coils are
approximately 1-m diameter and 1.2-m long and are the largest volume HTS coils produced to date in
the United States. The coils were pretested prior to shipment by IGC and meet specifications.

& Southwire and ORNL have signed a new cooperative agreement to develop superconducting
underground transmission cable technology. Recently, Southwire and ORNL’s Fusion Energy and
Metals and Ceramics divisions successfully completed the first phase of research, resulting in the
design and testing of four prototype, 1-m cable sections and the characterization of these cables with
both dc and ac current. The new agreement provides for precompetitive research and technology
development that will lead to the construction of a 30.5-m-long, three-phase HTS cable complete with
dielectrics, thermal insulation, and outer enclosures. The cable will be installed between two overhead
utility towers and will supply about 1250 A of current at 12.5 kV to the utility and building wire
plants at Southwire Company. In this manner, the cable will be tested under real-use conditions and
will verify the design of the various cable subsystems. ORNL will again be a partner in the project,
supplying research, design, and testing expertise in the areas of dielectric materials, cryogenics, and
superconductivity.

& Four-terminal ac impedance measurements are being carried out on superconductive YBa2Cu3O7�

films grown on RABiTS™ tape. The overall signal is dominated by the non-lossy component from the
1.2 µH/m self-inductance of the 1-mm-wide strips. The smaller loss voltage obeys behavior expected
for magnetic hysteretic losses, including the superconductive material in the mixed state. The present
results are preliminary in a study to determine the power-loss contributions, including those from the
ferromagnetic Ni substrate. Comparison is planned with results from similar YBCO films grown on
nonmagnetic insulating substrates, such as SrTiO3.

& Testing of the Southwire HTS transmission line prototype 4 has been completed. The dc measure-
ments indicate that the cable Ic using the 1-mV/cm criteria is about 975 A. The ac loss measurements
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