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Abstract. For process control, linewidth measurements are com-
monly performed on semiconductor wafers using top-down images
from critical dimension measurement scanning electron micro-
scopes (CD-SEMs). However, a measure of the line sidewall shape
will be required as linewidths continue to shrink. Sidewall shape can
be measured by physically cleaving the device and performing an
SEM scan of the cross section, but this process is time consuming
and results in destruction of product wafers. We develop a tech-
nique to estimate sidewall shape from top-down SEM images using
pattern recognition based on historical cross section/top-down im-
age pairs. Features are computed on subimages extracted from the
top-down images. Several combinations of principal component
analysis (PCA) and flavors of linear discriminant analysis (LDA) are
employed to reduce the dimensionality of the feature vectors and
maximize the spread between different sidewall shapes. Direct,
weighted LDA (DW-LDA) results in a feature set that provides the
best sidewall shape estimation. Experimental testing of the sidewall
estimation system shows a root mean square error of approximately
1.8% of the linewidth, showing that this system is a viable method
for estimating sidewall shape with little impact on the fabrication
process (no new hardware and a minimal increase in process
setup). © 2004 SPIE and IS&T. [DOI: 10.1117/1.1763586]

1 Introduction

show these are two very different lines with the left line
undercut and the right line overcut. While cross-section im-
ages such as those shown in Fig. 1 can be used to distin-
guish between sidewall shapes, the physical cleave of the
wafer required to make cross-section images is costly in
both time and product. Since CD-SEM tools that capture
top-down images are currently being used for measurement
of CD, we investigated the possibility of estimating side-
wall shape using only features extracted from top-down
images and a database of corresponding historical top-
down and cross-section image5.

In this paper, we propose an image retrieval system to
estimate sidewall structure from top-down imagery. Fea-
tures from a top-down query image are compared to a da-
tabase of features from other top-down images, each with
known corresponding sidewall shapes. The sidewall shape
of the query top-down is estimated using the sidewall
shapes of the retrieved top-downs. First, a historical reposi-
tory of corresponding top-down and cross-section image
pairs is constructed. Sidewall profiles are extracted from
each cross-section image and stored. Features are computed
from one or more subimages in each top-down image. As

In current semiconductor manufacturing environments, the number of the computed features for each such line
critical dimension(CD) (i.e., linewidth measurements are region is quite large, dimensionality reduction is performed
made almost exclusively using scanning electron micro-to make feature storage and feature vector comparisons
scope(SEM) images. This process—known as CD SEM (i.e., image retrievalmore tractable for large databases. In
(CD-SEM metrology—employs images that are usually this paper, we introduce several modifications to our earlier
acquired in a top-down configuration, i.e., looking down work. First, we use different regions of the top-down im-
onto the semiconductor line feature. Yield managementages for feature extraction. In the previous work, the top-
teams currently use the CD-SEM measurements to monitordown subimages covered the entire width of a line, like
the lithographic process and make corrections that keep théhose shown in Fig. 1, but here only line edges are con-
process within the required operating region. According to tained in the subimages. Second, Gabor filter responses for
the International Technology Roadmap for Semiconductors,some features are employed in hopes of capturing 2-D,
continually shrinking linewidths make it increasingly im- texture-like characteristics of the line-edge subimages. Fi-
portant to know the sidewall shape.g., the cross section nally, direct, weighted linear discriminant analysBW-
profile) of the lines rather than just their width. An example LDA) is applied for dimensionality reduction.
of this can be seen in Fig. 1, which shows the top-down The remainder of this paper is organized as follows.
images and corresponding cross-section images for two dif-Section 2 presents some background information on the
ferent lines. The top-down images could easily produce development of this estimation approach and how the ap-
similar CD measurements, but the cross-section imageroach fits in the current process control scheme. Next, we
describe the extraction and parameterization of sidewall
shapes and the process used to extract features from the
Paper ORNL-023 received Oct. 23, 2003; accepted for publication Dec. 17, 2003. top—down Images in Sec. 3. Section 4 d_ISCUSS_eS the use of
1017-9909/2004/$15.00 © 2004 SPIE and IS&T. DW-LDA to reduce the feature vector dimensionality. We
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Fig. 1 Two different cross sections with similar top-down linewidths.

present experimental results for the sidewall estimationwell as the electron-beam shape and power affect the inter-
over a variety of linewidths and pitches in Sec. 5. Finally, action between the electron beam and the surface. A list of
we conclude in Sec. 6 with some comments and futurevariables affecting SEM image formation is
paths for the research.

1. electron beam energy
2 Background 2. material properties

In the development of an image from any sensor, many 3. geometry of featuréwidth, height, wall angle, edge

factors determine the response of the sensor to various sur- sharpness, efc.

face types and shapes. For example, the illumination angle 4 relationship to surrounding featur@solated or dense

can greatly affect the image captured by a traditional cam- region

era. Top-down SEM images are influenced by many factors . .

of both the inspection surface topology and the SEM setup > charging effectéscanning speed, beam current, and

and geometry. Figure 2 shows an example of an electron all the preceding factoys

beam striking the surface of three different line types from 6. detector position, energy selectivity, and amplifier

overcut to undercut with the electron detector positioned at characteristics

an angle. A very basic interaction of the electron beam with o _ ) ) )

the line material is shown and clearly indicates that the ~Based on variation in SEM interaction with different

number of scattered electrons escaping from the materialine shapes, the good news is that the sidewall shapes

increases at the beam location as the line moves from overshould affect the top-down SEM image. However, interpre-

cut (left) to undercut(right). However, the backscattered tation of sidewall shape from a top-down SEM image is a

electrons may not reach the detector depending on the devery difficult modeling problem due to the many factors

tector position. just listed. For this reason, we have taken a learning ap-
Even though Fig. 2 shows only a simple model of the proach to determining sidewall structure from top-down

electron beam interaction. In this figure, the gray spider SEM imagery. A learning approach takes into account all of

web shows the interaction volume. Therefore, if more of the parameters of the SEM and surface materials by using

this gray region reaches the edges, more electrons will estraining data of known results taken from the same SEM

cape and be collected by the detector. This example quicklysetup and product material.

indicates the complexity of the SEM response to various Training data is commonly available for this approach

shapes. The shape and properties of the surface material asnce focus/exposuré/E) matrices are often used to char-

Electron Detector Electron Detector Electron Detector
Beam Beam Beam

Fig. 2 Electron beam interaction with various line shapes.
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Fig. 3 FEM data: (a) matrix describing focus exposure levels, (b) top-down SEM image, (c) linescan

of top-down SEM image, and (d) SEM image of cross section. Squares that have been crossed out
indicate data that is unavailable, generally due to physical damage caused in the cleaving process.
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acterize the lithographic process before production. An F/Eprovided Oak Ridge National Laboratof®RNL) with a
matrix is a wafer on which focus and exposure are variedvariety of F/E matrix datasets that span several design
between die of the wafer to determine the response of therules, line pitches, and CD-SEM tools.

lithographic process with respect to these two parameters. As evident from the preceding discussion, top-down
Figure 3 depicts the setup for one of the F/E matrices usedSEM images do contain some information that is relative to
in this research. At each of the locations in the matrix, a the sidewall shape. This relationship, however, is difficult
top-down SEM image is acquired. Next, the F/E matrix to model due to the number of interacting factors. Histori-
wafer is cleaved at those same locations and a cross-sectiooal imagery of top-down and cross-section pairs, however,
SEM image is captured. Thus, the F/E matrix provides top-is readily available in the form of F/E matrices already
down and cross-section data over a range of focus and exroutinely captured in process control. Therefore, a learning-
posure settings. This results in a good sampling of variousbased sidewall estimation approach can provide a low-cost
sidewall shapes that may be encountered during productionmethod, requiring no new imaging tools, to control the
As long as the matrix provides ample representation of all lithographic process using sidewall shape information.
possible sidewall shapes during production, a learning sys-

tem is possible. During process setup, only a portion of the .

F/E matrix is cross sectioned. Possible operating regionsS Feéature Extraction

are selected using the top-down SEM images, and the op¥igure 4 shows an overview of the proposed semiconductor
eration region is further reduced by cross sectioning thesidewall shape estimation system in the form of a block
regions selected from the top-down imagery. Therefore, us-diagram. In addition to a database that holds training data,
ing the F/E matrix as a training set may require more effort the two major database interaction components are the
during process setup, but the gain of being able to accu-build and query components. The build component is used
rately predict sidewall shape from top-down SEM images to enter cross-section/top-down pair training data to the
should be well worth the additional setup effort. We expect system and consists of algorithms to extract information
that historical F/E matrix data can be used to train the sys-(feature$ from the top-down images that distinguish be-
tem to reduce the dependence on acquiring a new F/E matween various cross-section types, dimensionality reduction
trix training set for each new product setup, but further algorithms for determining the feature combinations pro-
testing is necessary. For the development and testing of ouriding the best discrimination between sidewall shapes, and
sidewall estimation method, International SEMATECH algorithms for extraction of sidewall shape parameters from
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Fig. 4 Sidewall estimation system block diagram.

the corresponding cross-section image. The query compo<ross-section extractor is necessary only during the training
nent is responsible for submission of top-down images for cycle. Therefore, those using the tool to estimate sidewalls
sidewall estimation, searching the database for similar top-need not learn how to extract the sidewall shape from a
downs, and returning a sidewall estimate. Features must beross-section image. This enables the tool to be easily used
extracted from a top-down image submitted for sidewall in the fab once an “expert” has entered the training data.

estimation, so the query component uses the same algo- Once the user has rotationally aligned the cross section
rithms for extraction of features from top-down images and selected a subimage containing the cross section of a
used in the build component. Additionally, the query com- single line, histogram normalization is used to alleviate

ponent contains algorithms for searching and combiningcontrast variations experienced in the SEM images, and
similar cross sections to give a sidewall shape estimate. Thescaling is performed to ensure cross-section sidewall pa-
following subsections detail feature extraction from both rameters in the training set are on the same scale. Finally,
cross-section and top-down images and dimensionality re-edges are extracted from the subimage using the algorithm

duction for the top-down feature set. outlined in Fig. 5.
. ) A Gaussian filter is used to remove roughness on the
3.1 Sidewall Extraction cross-sectioned line material. A first step toward edge ex-

Once a wafer has been cleaved and a SEM cross-sectiotraction uses a Sobel edge filter followed by an edge thresh-
image acquired, the sidewall shape must be extracted fronpld set by the user. This intermediate binary edge image is
the cross-section image. Initial attempts were to automatemultiplied by the original subimage to place the intensity
the extraction, but even with the small number of cross- values of the cross section in the edge image. Since many
section images we have encountered500 imagey the of the line edges are bright, an intensity threshold set by the
variety in the images has made automation difficult. For the user enables further isolation of the cross-section edges
initial implementation, we have developed a semiautomaticfrom other edges in the image. Finally, clustering is per-
algorithm that has been successful. Full automation of theformed and clusters smaller than 100 pixels are filtered out
sidewall extraction is not as important as for the top-down removing any spurious edges along the base of the line and
feature extraction, because sidewall extraction only needghose resulting from large rough features within the cleaved
to be performed during the training process and not duringline. Notice that two thresholds must be supplied to this
sidewall estimation. Currently, the sidewall extraction pro- edge extraction algorithm. With adjustment of these two
cess requires the user to measure the scale on the imag#resholds, we were able to employ this sidewall extraction
rotate the image such that the substrate is on the horizonalgorithm easily and effectively for all of the cross sections
select a line in the cross-section image to be extracted, andn our data set.

adjust two threshold levels to properly extract the sidewall.  After edges have been isolated, a set of features
When placed in a more constrained environmé&#me uniquely describing the cross section is extracted. One goal
cross-section SEM tool and sejuphe sidewall extraction  for the finished system is the capability to estimate sidewall
should be easily automated. As mentioned earlier, theshapes across various design rulge., different line-
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Fig. 5 Edge extraction algorithm.

widths, pitches, and aspect ratiosoward this purpose, we 1

seek a representation that is invariant to the already men<= |- (W—Ww), 1)
tioned design rule parameters. We therefore define the side-

\F/)vglrl]tzhfa:g; %E;:htg E%ggﬁi'Z??]evggt\t‘vig:mt?igﬁ:gllyloi%a_‘cedwherevV is the approximate width at the sidewall vertical

tions are illustrated by the horizontal dashed lines in Figs. MdPoint, as given by

6(b) and Ge). Letting the widths(in nanometersbe repre- 60
sented by the 101-point vecter, wherew,=w(n) for n e w(n) @)
=0,...,100 =0 is the top and letting the design rule 2170 '

(i.e., targex linewidth (in nanometensbe represented by,
the normalized sidewall shape representatas a vector Examples of the resulting sidewall width curves are shown
is given by in Figs. Gc) and Gf).
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(b) Profile extracted from (a) with (c) Width curve corresponding to
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Fig. 6 Representation of the line sidewalls: (a) and (d) cross-section images, (b) and (e) extracted
profiles, and (c) and (f) normalized width curves of the profiles sampled uniformly over 101 points from
top to bottom.
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Fig. 8 Normalized horizontal profile from the rotationally corrected
Fig. 7 Example top-down image with three complete lines. This par- version of the image in Fig. 7.
ticular image is from a 180-nm (1:1 pitch) design rule.

therefore covered the entire linewidth and were the same
] ) size relative to the design rule. The motivation for this ap-
3.2 Top-Down Subimage Extraction proach was to enable the use of multiple design rules in the
Since features must be extracted from the top-down imagessame database since lines from different design rule lines
to estimate sidewall shapes; automation of this step is neccan still have very similar sidewall shapes. The relatice
essary to make the system feasible. Automation of the feathe design rulglinewidth, however, is still implicitly in-
ture extraction requires rotational alignment of the lines, cluded in this approach. For example, suppose line 1 and
location of the lines within a top-down image, and extrac- line 2 have the same sidewall shape, but line 1 is a 200-
tion of subimages containing the lines. Without loss of gen- nm-wide line from a 250-nm design rule, and line 2 is a
erality, we assume henceforth that all lines are vertically 120-nm-wide line from a 100-nm design rule. In the ex-
oriented. We begin with a top-down image such as thattracted subimages, line 2 will appear much wider than line
shown in Fig. 7. The first step is to correct for any small 1 relative to the subimage size and this will be reflected in
angular deviation from vertical. This is accomplished by all of the extracted features. Hence, we would not expect
first rotating the image over a small, fixed set of angles andthe line 1 and line 2 to appear very similar in our historical
computing the average column variance at each angledatabase even though their corresponding sidewall shapes
These variances are then fit to a quadratic and the mini-are very much alike. In this paper, we remove this implicit
mizer of this quadratic is taken as the angle of rotation. ~dependence by extracting line-edge subimages rather than
Once minor rotational variation has been corrected, thefull-line subimages. The process for rotational correction of
next step is to locate the lines within the image. A normal- the entire top-down image and line location within the full-
ized profile of the image is calculated by summing along Size image is the same as described above and in earlier
each column and scaling the resulting curve to lie betweenwork." The extracted subimages, however, are centered on
0.0 and 1.0; an example is shown in Fig. 8. From this line-edges rather than the line center and their size is set to
profile, we first locate peaks by labeling all curve regions be 0.6<1.8 times the design rule. Subimages are extracted
above 0.5 as peak regions, dilating those regions to fill anyfrom both right and left line edges and then rotated and/or
holes, and then labeling as peaks the maximum values irreflected appropriately so that the line feature is to the right
these regions. Peaks near the image edges are discarded. &md the gap between lingsubstratgis to the left. Three
Fig. 8, the six peaks detected in this manner are indicatedexample line-edge subimages are shown in Fig. 9.
with circles. Given the peaks, we next determine which of
the between-peak regions, or gaps, represent lines and.3 Feature Computation

which represent the space between two lines by applyingror each line-edge subimage extracted, we compute and
heuristic rules based on the between-peak average valuesiore a feature vector. To compare structures of different
the between-peak spacing, and the gradients to the left anghnysical dimensiongdue to varying design ruleswe use
right of each peak. . ) features that are invariant to the subimage scale. The first
Once the lines have been located in this manner, weset of features is computed using Gabor filfétayhich
extract one or more subimages along each line. Previously, have proven quite useful in analyzing texture-like image
we extracted one or more subimages from each line featureproperties. We employ a bank of filters that spans six scales
each such subimage was centered on the line and the sulyng 10 orientations, resulting in a tiling of the discrete-
image size was three times _the design rule on each s_lde. Foépace frequency plane that is illustrated in Fig. 10. The
example, for a 100-nm design rule, 360300-nm subim-  energy of a subimage that is contained in one of these 60
ages were extracted, and for a 250-nm design rule 750-filter bands is used as a single feature. We also use the
X750-nm subimages were extracted. These subimage$ogarithm of this energy, resulting in a total of 120 Gabor-
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(a) Sub-image from 100nm (1:1 (b) Sub-image from 180nm (1:1 (c) Sub-image from 250nm (1:1
pitch) line. pitch) line. pitch) line.

Fig. 9 Examples of line-edge subimages.

based features. We resize each subim@ageg bicubic in- lated to the large dimensionality of the original space. After
terpolation to be 32< 96 pixels and raster scan this image the feature extraction process already described, our feature
to add 3072 more features. We use the actual linewidthvectors havgp=3193 dimensions. Although it is possible
normalized by the design rule linewidth as the final feature. to compare top-down feature vectors in the 3193-D space,
Although linewidth is not necessarily an indicator of side- it is computationally demanding and unnecessary since
wall shape, in some cases actual width and sidewall shapéhere are redundant features as well as features that are not
are somewhat correlated. The net result is a 3193-point feahelpful with respect to the sidewall estimation problem.
ture vector for each line-edge subimage. We turn our atten-Motivated by techniques that have been successfully ap-
tion in the next section to finding a weighted subset of theseplied to template-based face recoginittthwe adopt an
features to make database querying more robust and mor&DA approach for dimensionality reduction. Note that dis-

computationally friendly. crimination in our system refers to the ability to differenti-
_ o . ate between top-downs associated with different sidewall
4 Dimensionality Reduction shapes. To discriminate between different sidewall shapes,

The aim of dimensionality reduction is to map feature vec- however, we must first define groupings of similar side-
tors in a high-dimensional space to some lower dimensionalwalls. We accomplish this by applying the well-known
subspace, usually because of computational difficulties re-k-means clustering algorithfito the 101-point normalized

sidewall representations defined by Ef). In the current

implementation, we emplo€ = 20 clusters. In Fig. 11, we
3p ' j ‘ ' ' B plot the width curves for two example clusters. The cluster
numbers(1l to 20 are then used as class labels for the
top-down images.

4.1 Direct Weighted LDA

The goal of traditional LDA(T-LDA) is to project high-
dimensional feature vectors iR" onto a lower dimensional
subspacek™, wherem<n, while preserving as much dis-
criminative information as possible. One formal expression
for the corresponding optimization criterion can be written
as

tr(ATS,A)

argAmaW , 3

whereA e R™™, tr(-) is the trace operato§,, e R"*" is

the within-class scatter matrix, an8,eR"*" is the

Fig. 10 Tiling of the discrete-space ([ — m, 7]) frequency plane with bgtvyeen-class scatter matrix. The within-class scatter ma-
a six-scale, 10-orientation bank of Gabor filters. trix is given by
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(a) Sidewall width curves of an example cluster. (b) Sidewall width curves of another example cluster.

Fig. 11 Clustering of the normalized sidewall width curves.

C N _ _ known as weighted pairwise Fisher critetimhich we re-
Sw=2, > X=X = 1T, (4)  fer to as the weighted LDAW-LDA). To begin, we first
=1j=1 note an alternate expressidior S,

c
2 a(Aij) (i = ) (i — )7, (6)

whereC is the total number of classdy; is the number of c-1
samples in clas€;, x{ e R" is thej’th vector ofC;, and ~ Sp= >,
nie R" is the mean ofC;. The between-class scatter ma- =1
trix is given by

j=

where we have assumed equal class pribfsis a measure
c of the separation between classesand C;, «a(-) is a

Sp=2> (wi—m)(ui—wm)T, (5) weighting function, and setting(-)=1 makes Eqs(5)
=1 and(6) equivalent. In W-LDA, the Mahalanobis distance is

N selected for the class separation measuye
where weR" is the ensemble mean. We note that

rgnk(sb)$C—1 since it is the sum o€ ranK One or Zero A =[(u;— p) TSy (i — )12 7)

(if wij=u) matrices, where at mo§&—1 are linearly inde-

pendent. For convenience, and without loss of generality,and the weighting functior(-) in Eq. (6) is selected such
we assume that rani§) =C—1 for the remainder of this  that the contribution of each pair of classes depefags
paper. The intuitive interpretation of E(B) is that T-LDA  proximately on the Bayes error rate between the classes,
attempts to simultaneously minimize the within-class scat- yielding

ter and maximize the between-class scatter. Perhaps the

most common approach for solving E®) is to solve the 1 A

generalized eigenproblem &, andS,,. This solution can  a(Ajj)= 577 (—') . (8
be achievefiby simultaneously diagonalizing, andS,, . i

The simultaneous diagonalization process is accomplished

(assumingS,, is nonsingular by whiteningS,,, diagonal- 412 Direct LDA

izing the resultingS,,, and then taking the eigenvectors of
Sy, with the largest eigenvalues. Intuitively, this process can
be described as whitening the denominator of &j.and
then maximizing the numerator over a reduced dimension-
ality. The converse approach of whitening the numerator
and minimizing the denominator is equivalent, but recall
that Sy, is generally singular and cannot be whitened.

One problem often encountered with LDA in practice is
that the original feature vectors may be of such high dimen-
sionality (3193 in our casethat the storage and/or eigenan-
alysis of S, and S,, may be impractical. In such applica-
tions, some other form of dimensionality reduction—
usually principal component analysi®CA) in the face
recognition case®%—performed prior to LDA. PCA, how-
ever, does not consider class labels and can decrease dis-
4.1.1 Weighted LDA criminative capability. Yu and Yang recently propoSean
The class separability criteria that T-LDA maximi?dss ~ LDA algorithm—direct LDA (D-LDA)—that can be di-
the Euclidean distance between the class means. Euclideafectly applied to high-dimensional data. - . _
distance, of course, is not necessarily representative of clas- The critical idea that enables D-LDA is to first project
sification accuracy, and its use as the separability measur@ll samples inR" onto the C—1)-dimensional column
can cause some classes to unnecessarily overlap in the respace ofS, (i.e., discard the nullspace &,). This is mo-
duced space. One proposed solution for this problem istivated by assuming that directions along which there is no
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between-class scatter are not useful for discrimination. Al-
though this assumption is not entirely true, restltadi-
cate the approach is still effective. In many high-
dimensional problems, the number of clas§ess much
smaller than the dimensionality of the vectarsRecall that
in our case, since we are using 20 sidewall clustérs,
=20. Recalling that rank§,) =C—1, we can reduce the
dimensionality of the problem from to C—1 by project-
ing onto the column space df,. By discarding the
nullspace ofS,, the between-class scatter matrix in the
reduced space is full rank. We can then use the simulta-
neous diagonalization approach mentioned above, where
we whiten the numerator of E¢3) and minimize the de-
nominator. This, in fact, permits us to preserve the
nullspace ofS,, (if it exists), which, according to other
researcht!*2 contains the most discriminative information.
As stated, the first step in D-LDA is to find a basis for
the (C—1)-dimensional column space &, . Recall that
Sy is annXxn matrix, which might imply a significant com-
putational burden ifi is large. Fortunately, th€—1 eigen-
vectors ofSy, corresponding to th€ — 1 nonzero eigenval-
ues can be found by solving a much more tractabieC
problem?®

4.1.3 Combination of direct and weighted LDA

From the discussion in the previous section, it would seem
desirable to exploit the benefits of W-LDA and D-LDA
simultaneously. There are, however, a couple of potential
issues that must be recognized and overcome. First, we
note that the computation @&, for W-LDA, as given by
Eq. (6), first requires the computation &, , which is a
largenx n matrix (wheren=3193 in our case The matrix
Sy is required since Mahalanobis distance is usedAfgr
and, as shown in Eq7), S, is required in the computa-
tion. Noting the need fos,,* leads us to another potential
difficulty; one of the primary motivations for D-LDA was
the preservation of the nullspace . If the null space of
Sy IS honempty, therﬁsv_\,1 does not exist.

We propose the following approach to address these
problems. First, recalling Eq6), we make the mild as-

We can now describe the complete DW-LDA algorithm
with the following six steps:

1. LetB e R™*" be an orthonormal basis for the column

space ofS?, the between-class scatter matrix in the
original space. Remove the nullspace of the between-
class scatter matrix by projecting all samples oBto

xe R"—BTxeR'.

. In the reduced spacg', computeS,,. If S,, is full

rank, computeS\,_vl; otherwise compute a pseudoin-
verseS,*.

. ComputeSy, using Eq.(6) with «;; given by Eq.(8)

andjj; given by Eq.(7). If S, is singular, then use a
pseudoinverseS,, ', when computing);; .

. WhitenSy:

Sp—WTS,W=1 .,
S,—S,=W'S,W,
whereW=¥T ~*2js the whitening transformation of

Sy with ¥ being the eigenvectors &, andI" the
diagonal eigenvalue matrix.

. DiagonalizeS,, :

S.,—D,=V'S,V,
whereD,, is the diagonal eigenvalue matrix 8f and

V contains the corresponding orthonormal eigenvec-
tors.

. Assume that the eigenvalues and eigenvectoi3,of

and V are sorted in ascending order, possibly with
some zeros iD,,. To maximize the LDA criterion in
Eq. (3) while reducing to dimensionalitgn, take the
first m columns ofV, which correspond to then
lowest(some possibly zejaeigenvalues. The overall
resulting transformation matriA € R"*™ can then
be written as

| mxXm
). 9

0(nfm)><m

A=BWV<

sumption thak(A;;) >0. Note that this assumption implies 5 Experimental Results

that no two classes have equal means and $at exists

In this section, we report results obtained using the pro-

(or is replaced with an alternativeln this case, the posed system on real semiconductor data where different
nullspaces ofS, from Egs. (5) and (6) are equivalent.  sidewall shapes were produced by varying the focus and
Hence we can remove the nullspace by projecting onto theexposure(producing the F/E matrices we discussed previ-
(C—1)-dimensional column space &,. Recall that the  ously) of the lithographic tool. The available data set tested
column space ofS, can be found by eigenanalysis of a comprised five design rules, described as follows, with top-
much more tractabl€ X C matrix. Once we have projected down images captured by one or more of three different
to theC—1 column space, we compu8, in the reduced ~ CD-SEM tools:

space and, if it is nonsingular, we simply proceed with
W-LDA as already described.

If, however,S,, is indeed singular in the column space
of Sy, we can use a pseudoinverse. We note, however, that
Sy is generally never singular in the column spac&gko . . ) .
|ong as we have at least two Samp'es in every C('ass . 180-nm densé].:l pIth‘D |IneS, 70 cross sections with
two top-down subimages associated with each sidewall 201 top-downs
clustep. This is always the case in our system, hence the 4. 180-nm isolated5:1 pitch lines, 88 cross sections
projection ofS,, is full rank. with 263 top-downs

1. 100-nm dens€:1 pitch lines, 47 cross sections with
126 top-downs

2. 100-nm isolated5:1 pitch lines, 94 cross sections
with 269 top-downs

w

482 / Journal of Electronic Imaging / July 2004 / Vol. 13(3)



Semiconductor sidewall shape estimation

100 - 100 = %
) / \ ) , i,f/ \\\,
80 fi/ \X 80
70 } { 70
| e0 i } 60 g’ ‘§
D ; g
: ! i / |
I 50 ; : 50
s o1 ] | ..
Ll § N |
30 4 : 30 i 3
\ | | i
20 2 £ 20 1
. }g} H’t . ;’g é\
0 = T T T - 0 T T T
-100 -50 0 50 100 -100 -50 0 50 100
Fig. 12 Examples of sidewall estimates (dotted lines) versus true sidewall shape (solid lines).
5. 250-nm dens¢1:1 pitch lines, 113 cross sections D(Q,H)= min d(zy,z), (10
with 113 top-downs q=1...59
h=1,....S4

Hence, the complete set of available data comprised 412
sidewalls and 972 top-dowrisomplete top-down images, where z, and z, represent the subimage feature vectors,

not subimages Having a data set with variations in line  computed according to Secs. 3 and 4, for subintagéfull
widths, line spacing, and imaging to@@D-SEM response o5 qownQ and sub-imagé of full top-down H, respec-
enables us to test the application over a wide range of cir- ively. For the reported experiments, Euclidean distance
cumstances. From the 972 top-down images, we extractecgN f

. i . as used for the distance measdfe). For a given query
9718 subimages~ 10 per full-size top-downaccordingto . ) .
the process of Sec. 3. imageQ, D(Q,H) was computed for every top-dowkh in

Hold-one-out type tests were performed by removing ath.e training set and sorte_d in ascending or(_JIer. The sidewall
single sidewall and all corresponding top-downs from the \év'dth curves corrzsi)ondl?g t? tht?l closbishlst%ncal Itlopr-1
training data when computing the transformation matrix for 40WNs Were used to estimate the query sidewall shape,
dimensionality reduction, as described in Sec. 4. Each of(Q) (@s a vector, as follows:
these hold-out top-downs was then submitted as a query.

The corresponding sidewall shape was estimated via_

weighted averagingdescribed in the followingand com- C(Q)=i21 a;c(H)), (12)
pared to the true sidewall shape. This process was repeated

for each of the 412 available cross sections, correspondin . : -

to 972 different top-down queries. For comparison to the%vh_erep(Hi) is the S'de_Wa” of nearest-neighbbrand the
newly proposed DW-LDA approach for dimensionality re- Weighting factors are given by

duction, we also tested D-LDA, PCAé)Ius T-LDé@his is

the same method from our earlier workand PCA plus
W-LDA. @i

Weighted averaging was employed to estimate the query
sidewall shape, where the weighting is determined by the
distances between the query and Heearest top-downs
from the historical databas@vhere various values ok
were testeld The distance between a full query top-down
and a full historical top-down is defined by the closest pair

% 1

i=1 D(Q,H;)

—1 1

D(Q,H|) ,

12

so that>;a;=1. The number of nearest neighbors used in
the tests was allowed to take on valdés 1,...,50. Figure
12 shows two examples of sidewall estimafgéstted line$
and the true sidewall shagsolid line corresponding to

f subi f In oth d the submitted top-down image. In this figure, the horizontal
of subimage feature vectors. In other wordsQetepresent  ,is nits are in nanometers and the vertical scale is per-

the full top-down query image with=1,... Sq subimages,  centage of line height. Notice the estimates not only pro-
and letH with h=1,....S; subimages be a top-down in the vide a good approximation to the top roundness, but the
historical (training database. The distance betwe@rand roughness of the sides and the footer shape are also closely
H, D(Q,H), is then defined as estimated. While these figures show the capabilities of this
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Fig. 13 Average root mean square (left) and average maximum absolute (right) error over all hold-out
data (as a percentage of design rule linewidth) versus number of nearest neighbors used.

technique, measures are necessary to quantify the perforhad available and used 6629 full-line subimaggzch three
mance of the sidewall estimation technique over the entiretimes the linewidth design rule squarbere we had avail-
set of test data. Root mean square and maximum absolutable 47,140 line-edge subimages but only used 9718.
errors were chosen as the performance measures. Hence our training data was effectively less diverse. We are
We computed the root mean square and maximum abso€urrently adapting the existing code to make better use of
lute errors(normalized by the design rule linewidtfor the this larger training set. The second hypothesis is that the
estimated sidewall shape of every top-down hold-out usingactual linewidth is more correlated with the sidewall shape
the four different dimensionality reduction methods men- (at least in our currently available dathan we suspected.
tioned (DW-LDA, D-LDA, PCA+T-LDA, PCA+W- To test this hypothesis, we intend to append some full-line
LDA). The average of these errors across all top-down que-features to the line-edge feature vectors in future work.
ries is plotted against the number of nearest neighbors in
Fig. 13, where the vertical axis represents the error divided6 Conclusions
by the design rule linewidth as a percentdge., an error
of 5% for a 100-nm design rule implies a 5-nm error in
width). We can note from the plots in Fig. 13 that DW-LDA
performs better than all of the other approaches. Interest
ingly, D-LDA actually performs worse than all of the other
techniques, including PCA plus T-LDA; this is contrary to
some results that have been previously repoftatte be-

We presented an image retrieval system for estimating
semiconductor sidewall shapes from top-down scanning
electron microscopy images. Since this system is trained
‘with historical data in the form of top-down/cross-section
image pairs that are already collected in F/E matrices as a
part of process setup, and the system requires no new hard-
lieve this is because the D-LDA may tend to preserve noisyvggr_eséi;lnt%;%pfgf ;\ECSGEQA sz%iiﬁ;rgsgégeég% Likggs%

features that seem to be discriminative in the training data,inyoqyced to the semiconductor fab to estimate sidewall
but that do not generalize well to the testing data. The PCA

first approach, however, would minimize the impact of
such noisy features.

Figure 14 shows the error distributiorfasing all 972
hold-outg at various positions along the vertical extent of
the sidewall usindK = 15 nearest neighbors with DW-LDA.
Note that the largest errors are seen near th¢36@0 and
bottom (5%) of the sidewall, but that the overwhelming
majority of these errors are still withirr 10%. ‘ ' '

Finally, we note that the errors reported here are, in fact, | A ‘ ‘

&

75%
f 4

50%

about the same or slightly higher than those reported in the
earlier approach.For example, as seen in Fig. (&8 DW- : :

LDA achieves an average root mean squamas) error of . ! ' ? !

about 1.8%, while in our previous paper we reported an % [ J\\

average rms error of about 1.7%. Similarly, here we ' : . : ; ;
achieve an average maximum absoliN®\ ) error of about [ . . ! - . :

5.7%, while we previously reported an average MA error of & | J/F\\M :

about 5.5%. We hypothesize two possible explanations for . R ; ; L

this. First, since our extracted subimages are much smaller 02 -015  -0.1 =005 0 005 01 015 02

_here, we actually used Ie.ss total ar(.aa .Of each tc)p_dOWnFig. 14 Sidewall shape error distributions (as a fraction of design
image to make t_he experiments easily |mpI_emented With ryle linewidth) at various points along the sidewall height (top of line
current Computatlonal resources. In the previous eﬁort, We structure is 100%, bottom is 0%).
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shape. Use of this system would only require the additional
effort of building the historical database, which would be
done as a part of process setup.

We presented details on the feature extraction portions
of this system and the dimensionality reduction methods
applied to the problem. We present a new approach for,
dimensionality reduction called DW-LDA. Experimental
results indicate that the proposed system can estimate sid computer engineering from the Georgia In-
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the actual sidewall shape. Thus for a 100-nm line, the rms clogy to Improve yield in the semiconductor industry
error is 1.8 nm. _
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