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Abstract. For process control, linewidth measurements are com-
monly performed on semiconductor wafers using top-down images
from critical dimension measurement scanning electron micro-
scopes (CD-SEMs). However, a measure of the line sidewall shape
will be required as linewidths continue to shrink. Sidewall shape can
be measured by physically cleaving the device and performing an
SEM scan of the cross section, but this process is time consuming
and results in destruction of product wafers. We develop a tech-
nique to estimate sidewall shape from top-down SEM images using
pattern recognition based on historical cross section/top-down im-
age pairs. Features are computed on subimages extracted from the
top-down images. Several combinations of principal component
analysis (PCA) and flavors of linear discriminant analysis (LDA) are
employed to reduce the dimensionality of the feature vectors and
maximize the spread between different sidewall shapes. Direct,
weighted LDA (DW-LDA) results in a feature set that provides the
best sidewall shape estimation. Experimental testing of the sidewall
estimation system shows a root mean square error of approximately
1.8% of the linewidth, showing that this system is a viable method
for estimating sidewall shape with little impact on the fabrication
process (no new hardware and a minimal increase in process
setup). © 2004 SPIE and IS&T. [DOI: 10.1117/1.1763586]

1 Introduction

In current semiconductor manufacturing environmen
critical dimension~CD! ~i.e., linewidth! measurements ar
made almost exclusively using scanning electron mic
scope~SEM! images. This process—known as CD SE
~CD-SEM! metrology—employs images that are usua
acquired in a top-down configuration, i.e., looking dow
onto the semiconductor line feature. Yield managem
teams currently use the CD-SEM measurements to mon
the lithographic process and make corrections that keep
process within the required operating region. According
the International Technology Roadmap for Semiconduct
continually shrinking linewidths make it increasingly im
portant to know the sidewall shape~e.g., the cross sectio
profile! of the lines rather than just their width. An examp
of this can be seen in Fig. 1, which shows the top-do
images and corresponding cross-section images for two
ferent lines. The top-down images could easily produ
similar CD measurements, but the cross-section ima
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show these are two very different lines with the left lin
undercut and the right line overcut. While cross-section i
ages such as those shown in Fig. 1 can be used to di
guish between sidewall shapes, the physical cleave of
wafer required to make cross-section images is costly
both time and product. Since CD-SEM tools that captu
top-down images are currently being used for measurem
of CD, we investigated the possibility of estimating sid
wall shape using only features extracted from top-do
images and a database of corresponding historical
down and cross-section images.1,2

In this paper, we propose an image retrieval system
estimate sidewall structure from top-down imagery. Fe
tures from a top-down query image are compared to a
tabase of features from other top-down images, each w
known corresponding sidewall shapes. The sidewall sh
of the query top-down is estimated using the sidew
shapes of the retrieved top-downs. First, a historical rep
tory of corresponding top-down and cross-section ima
pairs is constructed. Sidewall profiles are extracted fr
each cross-section image and stored. Features are com
from one or more subimages in each top-down image.
the number of the computed features for each such
region is quite large, dimensionality reduction is perform
to make feature storage and feature vector comparis
~i.e., image retrieval! more tractable for large databases.
this paper, we introduce several modifications to our ear
work. First, we use different regions of the top-down im
ages for feature extraction. In the previous work, the to
down subimages covered the entire width of a line, li
those shown in Fig. 1, but here only line edges are c
tained in the subimages. Second, Gabor filter response
some features are employed in hopes of capturing 2
texture-like characteristics of the line-edge subimages.
nally, direct, weighted linear discriminant analysis~DW-
LDA ! is applied for dimensionality reduction.

The remainder of this paper is organized as follow
Section 2 presents some background information on
development of this estimation approach and how the
proach fits in the current process control scheme. Next,
describe the extraction and parameterization of sidew
shapes and the process used to extract features from
top-down images in Sec. 3. Section 4 discusses the us
DW-LDA to reduce the feature vector dimensionality. W
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Fig. 1 Two different cross sections with similar top-down linewidths.
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present experimental results for the sidewall estimat
over a variety of linewidths and pitches in Sec. 5. Fina
we conclude in Sec. 6 with some comments and fut
paths for the research.

2 Background

In the development of an image from any sensor, ma
factors determine the response of the sensor to various
face types and shapes. For example, the illumination a
can greatly affect the image captured by a traditional ca
era. Top-down SEM images are influenced by many fac
of both the inspection surface topology and the SEM se
and geometry. Figure 2 shows an example of an elec
beam striking the surface of three different line types fro
overcut to undercut with the electron detector positioned
an angle. A very basic interaction of the electron beam w
the line material is shown and clearly indicates that
number of scattered electrons escaping from the mate
increases at the beam location as the line moves from o
cut ~left! to undercut~right!. However, the backscattere
electrons may not reach the detector depending on the
tector position.

Even though Fig. 2 shows only a simple model of t
electron beam interaction. In this figure, the gray spi
web shows the interaction volume. Therefore, if more
this gray region reaches the edges, more electrons will
cape and be collected by the detector. This example qui
indicates the complexity of the SEM response to vario
shapes. The shape and properties of the surface mater
r-
e
-
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t

l
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-
y
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well as the electron-beam shape and power affect the in
action between the electron beam and the surface. A lis
variables affecting SEM image formation is

1. electron beam energy

2. material properties

3. geometry of feature~width, height, wall angle, edge
sharpness, etc.!

4. relationship to surrounding features~isolated or dense
region!

5. charging effects~scanning speed, beam current, a
all the preceding factors!

6. detector position, energy selectivity, and amplifi
characteristics

Based on variation in SEM interaction with differen
line shapes, the good news is that the sidewall sha
should affect the top-down SEM image. However, interp
tation of sidewall shape from a top-down SEM image is
very difficult modeling problem due to the many facto
just listed. For this reason, we have taken a learning
proach to determining sidewall structure from top-dow
SEM imagery. A learning approach takes into account al
the parameters of the SEM and surface materials by u
training data of known results taken from the same SE
setup and product material.

Training data is commonly available for this approa
since focus/exposure~F/E! matrices are often used to cha
Fig. 2 Electron beam interaction with various line shapes.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 475
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476 / Jo
Fig. 3 FEM data: (a) matrix describing focus exposure levels, (b) top-down SEM image, (c) linescan
of top-down SEM image, and (d) SEM image of cross section. Squares that have been crossed out
indicate data that is unavailable, generally due to physical damage caused in the cleaving process.
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acterize the lithographic process before production. An
matrix is a wafer on which focus and exposure are var
between die of the wafer to determine the response of
lithographic process with respect to these two paramet
Figure 3 depicts the setup for one of the F/E matrices u
in this research. At each of the locations in the matrix
top-down SEM image is acquired. Next, the F/E mat
wafer is cleaved at those same locations and a cross-se
SEM image is captured. Thus, the F/E matrix provides t
down and cross-section data over a range of focus and
posure settings. This results in a good sampling of vari
sidewall shapes that may be encountered during produc
As long as the matrix provides ample representation of
possible sidewall shapes during production, a learning s
tem is possible. During process setup, only a portion of
F/E matrix is cross sectioned. Possible operating regi
are selected using the top-down SEM images, and the
eration region is further reduced by cross sectioning
regions selected from the top-down imagery. Therefore,
ing the F/E matrix as a training set may require more eff
during process setup, but the gain of being able to ac
rately predict sidewall shape from top-down SEM imag
should be well worth the additional setup effort. We exp
that historical F/E matrix data can be used to train the s
tem to reduce the dependence on acquiring a new F/E
trix training set for each new product setup, but furth
testing is necessary. For the development and testing of
sidewall estimation method, International SEMATEC
urnal of Electronic Imaging / July 2004 / Vol. 13(3)
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provided Oak Ridge National Laboratory~ORNL! with a
variety of F/E matrix datasets that span several des
rules, line pitches, and CD-SEM tools.

As evident from the preceding discussion, top-dow
SEM images do contain some information that is relative
the sidewall shape. This relationship, however, is diffic
to model due to the number of interacting factors. Histo
cal imagery of top-down and cross-section pairs, howe
is readily available in the form of F/E matrices alrea
routinely captured in process control. Therefore, a learni
based sidewall estimation approach can provide a low-c
method, requiring no new imaging tools, to control t
lithographic process using sidewall shape information.

3 Feature Extraction

Figure 4 shows an overview of the proposed semicondu
sidewall shape estimation system in the form of a blo
diagram. In addition to a database that holds training d
the two major database interaction components are
build and query components. The build component is u
to enter cross-section/top-down pair training data to
system and consists of algorithms to extract informat
~features! from the top-down images that distinguish b
tween various cross-section types, dimensionality reduc
algorithms for determining the feature combinations p
viding the best discrimination between sidewall shapes,
algorithms for extraction of sidewall shape parameters fr
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Fig. 4 Sidewall estimation system block diagram.
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the corresponding cross-section image. The query com
nent is responsible for submission of top-down images
sidewall estimation, searching the database for similar t
downs, and returning a sidewall estimate. Features mus
extracted from a top-down image submitted for sidew
estimation, so the query component uses the same a
rithms for extraction of features from top-down imag
used in the build component. Additionally, the query co
ponent contains algorithms for searching and combin
similar cross sections to give a sidewall shape estimate.
following subsections detail feature extraction from bo
cross-section and top-down images and dimensionality
duction for the top-down feature set.

3.1 Sidewall Extraction

Once a wafer has been cleaved and a SEM cross-se
image acquired, the sidewall shape must be extracted f
the cross-section image. Initial attempts were to autom
the extraction, but even with the small number of cro
section images we have encountered (,500 images!, the
variety in the images has made automation difficult. For
initial implementation, we have developed a semiautom
algorithm that has been successful. Full automation of
sidewall extraction is not as important as for the top-do
feature extraction, because sidewall extraction only ne
to be performed during the training process and not dur
sidewall estimation. Currently, the sidewall extraction p
cess requires the user to measure the scale on the im
rotate the image such that the substrate is on the hori
select a line in the cross-section image to be extracted,
adjust two threshold levels to properly extract the sidew
When placed in a more constrained environment~same
cross-section SEM tool and setup!, the sidewall extraction
should be easily automated. As mentioned earlier,
-

-
e
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e
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,
d

cross-section extractor is necessary only during the train
cycle. Therefore, those using the tool to estimate sidew
need not learn how to extract the sidewall shape from
cross-section image. This enables the tool to be easily u
in the fab once an ‘‘expert’’ has entered the training dat

Once the user has rotationally aligned the cross sec
and selected a subimage containing the cross section
single line, histogram normalization is used to allevia
contrast variations experienced in the SEM images,
scaling is performed to ensure cross-section sidewall
rameters in the training set are on the same scale. Fin
edges are extracted from the subimage using the algor
outlined in Fig. 5.

A Gaussian filter is used to remove roughness on
cross-sectioned line material. A first step toward edge
traction uses a Sobel edge filter followed by an edge thre
old set by the user. This intermediate binary edge imag
multiplied by the original subimage to place the intens
values of the cross section in the edge image. Since m
of the line edges are bright, an intensity threshold set by
user enables further isolation of the cross-section ed
from other edges in the image. Finally, clustering is p
formed and clusters smaller than 100 pixels are filtered
removing any spurious edges along the base of the line
those resulting from large rough features within the cleav
line. Notice that two thresholds must be supplied to t
edge extraction algorithm. With adjustment of these t
thresholds, we were able to employ this sidewall extract
algorithm easily and effectively for all of the cross sectio
in our data set.

After edges have been isolated, a set of featu
uniquely describing the cross section is extracted. One g
for the finished system is the capability to estimate sidew
shapes across various design rules~i.e., different line-
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 477
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Fig. 5 Edge extraction algorithm.
en
ide
ce

gs.

al

wn
widths, pitches, and aspect ratios!. Toward this purpose, we
seek a representation that is invariant to the already m
tioned design rule parameters. We therefore define the s
wall shape as the normalized width at 101 equally spa
points from top to bottom. These widths~at several loca-
tions! are illustrated by the horizontal dashed lines in Fi
6~b! and 6~e!. Letting the widths~in nanometers! be repre-
sented by the 101-point vectorw, wherewn5w(n) for n
50,...,100 (n50 is the top! and letting the design rule
~i.e., target! linewidth ~in nanometers! be represented byL,
the normalized sidewall shape representation~as a vector!
is given by
ctronic Imaging / July 2004 / Vol. 13(3)
-
-

d

c5
1

L
~w2w̄!, ~1!

wherew̄ is the approximate width at the sidewall vertic
midpoint, as given by

w̄5
1

21 (
n540

60

w~n!. ~2!

Examples of the resulting sidewall width curves are sho
in Figs. 6~c! and 6~f!.
Fig. 6 Representation of the line sidewalls: (a) and (d) cross-section images, (b) and (e) extracted
profiles, and (c) and (f) normalized width curves of the profiles sampled uniformly over 101 points from
top to bottom.
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Semiconductor sidewall shape estimation
3.2 Top-Down Subimage Extraction

Since features must be extracted from the top-down ima
to estimate sidewall shapes; automation of this step is n
essary to make the system feasible. Automation of the
ture extraction requires rotational alignment of the lin
location of the lines within a top-down image, and extra
tion of subimages containing the lines. Without loss of ge
erality, we assume henceforth that all lines are vertica
oriented. We begin with a top-down image such as t
shown in Fig. 7. The first step is to correct for any sm
angular deviation from vertical. This is accomplished
first rotating the image over a small, fixed set of angles a
computing the average column variance at each an
These variances are then fit to a quadratic and the m
mizer of this quadratic is taken as the angle of rotation

Once minor rotational variation has been corrected,
next step is to locate the lines within the image. A norm
ized profile of the image is calculated by summing alo
each column and scaling the resulting curve to lie betw
0.0 and 1.0; an example is shown in Fig. 8. From t
profile, we first locate peaks by labeling all curve regio
above 0.5 as peak regions, dilating those regions to fill
holes, and then labeling as peaks the maximum value
these regions. Peaks near the image edges are discard
Fig. 8, the six peaks detected in this manner are indica
with circles. Given the peaks, we next determine which
the between-peak regions, or gaps, represent lines
which represent the space between two lines by apply
heuristic rules based on the between-peak average v
the between-peak spacing, and the gradients to the left
right of each peak.

Once the lines have been located in this manner,
extract one or more subimages along each line. Previou1

we extracted one or more subimages from each line feat
each such subimage was centered on the line and the
image size was three times the design rule on each side
example, for a 100-nm design rule, 300-3300-nm subim-
ages were extracted, and for a 250-nm design rule 7
3750-nm subimages were extracted. These subima

Fig. 7 Example top-down image with three complete lines. This par-
ticular image is from a 180-nm (1:1 pitch) design rule.
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therefore covered the entire linewidth and were the sa
size relative to the design rule. The motivation for this a
proach was to enable the use of multiple design rules in
same database since lines from different design rule li
can still have very similar sidewall shapes. The relative~to
the design rule! linewidth, however, is still implicitly in-
cluded in this approach. For example, suppose line 1
line 2 have the same sidewall shape, but line 1 is a 2
nm-wide line from a 250-nm design rule, and line 2 is
120-nm-wide line from a 100-nm design rule. In the e
tracted subimages, line 2 will appear much wider than l
1 relative to the subimage size and this will be reflected
all of the extracted features. Hence, we would not exp
the line 1 and line 2 to appear very similar in our historic
database even though their corresponding sidewall sh
are very much alike. In this paper, we remove this impli
dependence by extracting line-edge subimages rather
full-line subimages. The process for rotational correction
the entire top-down image and line location within the fu
size image is the same as described above and in ea
work.1 The extracted subimages, however, are centered
line-edges rather than the line center and their size is se
be 0.631.8 times the design rule. Subimages are extrac
from both right and left line edges and then rotated and
reflected appropriately so that the line feature is to the ri
and the gap between lines~substrate! is to the left. Three
example line-edge subimages are shown in Fig. 9.

3.3 Feature Computation

For each line-edge subimage extracted, we compute
store a feature vector. To compare structures of differ
physical dimensions~due to varying design rules!, we use
features that are invariant to the subimage scale. The
set of features is computed using Gabor filters,3,4 which
have proven quite useful in analyzing texture-like ima
properties. We employ a bank of filters that spans six sca
and 10 orientations, resulting in a tiling of the discret
space frequency plane that is illustrated in Fig. 10. T
energy of a subimage that is contained in one of these
filter bands is used as a single feature. We also use
logarithm of this energy, resulting in a total of 120 Gabo

Fig. 8 Normalized horizontal profile from the rotationally corrected
version of the image in Fig. 7.
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 479
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Fig. 9 Examples of line-edge subimages.
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based features. We resize each subimage~using bicubic in-
terpolation! to be 32396 pixels and raster scan this imag
to add 3072 more features. We use the actual linew
normalized by the design rule linewidth as the final featu
Although linewidth is not necessarily an indicator of sid
wall shape, in some cases actual width and sidewall sh
are somewhat correlated. The net result is a 3193-point
ture vector for each line-edge subimage. We turn our at
tion in the next section to finding a weighted subset of th
features to make database querying more robust and m
computationally friendly.

4 Dimensionality Reduction

The aim of dimensionality reduction is to map feature ve
tors in a high-dimensional space to some lower dimensio
subspace, usually because of computational difficulties

Fig. 10 Tiling of the discrete-space (@2p,p#) frequency plane with
a six-scale, 10-orientation bank of Gabor filters.
ctronic Imaging / July 2004 / Vol. 13(3)
.
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lated to the large dimensionality of the original space. Af
the feature extraction process already described, our fea
vectors havep53193 dimensions. Although it is possibl
to compare top-down feature vectors in the 3193-D spa
it is computationally demanding and unnecessary si
there are redundant features as well as features that ar
helpful with respect to the sidewall estimation proble
Motivated by techniques that have been successfully
plied to template-based face recoginition,5,6 we adopt an
LDA approach for dimensionality reduction. Note that di
crimination in our system refers to the ability to differen
ate between top-downs associated with different sidew
shapes. To discriminate between different sidewall sha
however, we must first define groupings of similar sid
walls. We accomplish this by applying the well-know
k-means clustering algorithm7 to the 101-point normalized
sidewall representations defined by Eq.~1!. In the current
implementation, we employC520 clusters. In Fig. 11, we
plot the width curves for two example clusters. The clus
numbers~1 to 20! are then used as class labels for t
top-down images.

4.1 Direct Weighted LDA

The goal of traditional LDA~T-LDA ! is to project high-
dimensional feature vectors inRn onto a lower dimensiona
subspaceRm, wherem,n, while preserving as much dis
criminative information as possible. One formal express
for the corresponding optimization criterion can be writt
as

argmax
A

tr~ATSbA!

tr~ATSwA!
, ~3!

whereAPRn3m, tr(•) is the trace operator,SwPRn3n is
the within-class scatter matrix, andSbPRn3n is the
between-class scatter matrix. The within-class scatter
trix is given by



Semiconductor sidewall shape estimation
Fig. 11 Clustering of the normalized sidewall width curves.
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Sw5(
i 51

C

(
j 51

Ni

@xj
( i )2m i #@xj

( i )2m i #
T, ~4!

whereC is the total number of classes,Ni is the number of
samples in classCi , xj

( i )PRn is the j ’ th vector ofCi , and
m iPRn is the mean ofCi . The between-class scatter m
trix is given by

Sb5(
i 51

C

~m i2m!~m i2m!T, ~5!

where mPRn is the ensemble mean. We note th
rank (Sb)<C21 since it is the sum ofC rank one or zero
~if m i5m) matrices, where at mostC21 are linearly inde-
pendent. For convenience, and without loss of genera
we assume that rank (Sb)5C21 for the remainder of this
paper. The intuitive interpretation of Eq.~3! is that T-LDA
attempts to simultaneously minimize the within-class sc
ter and maximize the between-class scatter. Perhaps
most common approach for solving Eq.~3! is to solve the
generalized eigenproblem ofSb andSw . This solution can
be achieved8 by simultaneously diagonalizingSb andSw .
The simultaneous diagonalization process is accomplis
~assumingSw is nonsingular! by whiteningSw , diagonal-
izing the resultingSb , and then taking the eigenvectors
Sb with the largest eigenvalues. Intuitively, this process c
be described as whitening the denominator of Eq.~3! and
then maximizing the numerator over a reduced dimens
ality. The converse approach of whitening the numera
and minimizing the denominator is equivalent, but rec
that Sb is generally singular and cannot be whitened.

4.1.1 Weighted LDA

The class separability criteria that T-LDA maximizes8,9 is
the Euclidean distance between the class means. Eucli
distance, of course, is not necessarily representative of c
sification accuracy, and its use as the separability mea
can cause some classes to unnecessarily overlap in th
duced space. One proposed solution for this problem
,

e

d

-
r

an
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s

known as weighted pairwise Fisher criteria,9 which we re-
fer to as the weighted LDA~W-LDA !. To begin, we first
note an alternate expression9 for Sb :

Sb5 (
i 51

C21

(
j 5 i 11

C

a~D i j !~m i2m j !~m i2m j !
T, ~6!

where we have assumed equal class priors,D i j is a measure
of the separation between classesCi and Cj , a(•) is a
weighting function, and settinga(•)51 makes Eqs.~5!
and~6! equivalent. In W-LDA, the Mahalanobis distance
selected for the class separation measureD i j :

D i j 5@~m i2m j !
TSw

21~m i2m j !#
1/2, ~7!

and the weighting functiona(•) in Eq. ~6! is selected such
that the contribution of each pair of classes depends~ap-
proximately! on the Bayes error rate between the class
yielding

a~D i j !5
1

2D i j
2 erfS D i j

2&
D . ~8!

4.1.2 Direct LDA

One problem often encountered with LDA in practice
that the original feature vectors may be of such high dim
sionality ~3193 in our case! that the storage and/or eigena
alysis of Sb and Sw may be impractical. In such applica
tions, some other form of dimensionality reduction—
usually principal component analysis~PCA! in the face
recognition case5,6,10—performed prior to LDA. PCA, how-
ever, does not consider class labels and can decrease
criminative capability. Yu and Yang recently proposed11 an
LDA algorithm—direct LDA ~D-LDA !—that can be di-
rectly applied to high-dimensional data.

The critical idea that enables D-LDA is to first proje
all samples inRn onto the (C21)-dimensional column
space ofSb ~i.e., discard the nullspace ofSb). This is mo-
tivated by assuming that directions along which there is
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 481
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between-class scatter are not useful for discrimination.
though this assumption is not entirely true, results11 indi-
cate the approach is still effective. In many hig
dimensional problems, the number of classesC is much
smaller than the dimensionality of the vectorsn. Recall that
in our case, since we are using 20 sidewall clustersC
520. Recalling that rank (Sb)5C21, we can reduce the
dimensionality of the problem fromn to C21 by project-
ing onto the column space ofSb . By discarding the
nullspace ofSb , the between-class scatter matrix in t
reduced space is full rank. We can then use the simu
neous diagonalization approach mentioned above, w
we whiten the numerator of Eq.~3! and minimize the de-
nominator. This, in fact, permits us to preserve t
nullspace ofSw ~if it exists!, which, according to othe
research,11,12 contains the most discriminative informatio

As stated, the first step in D-LDA is to find a basis f
the (C21)-dimensional column space ofSb . Recall that
Sb is ann3n matrix, which might imply a significant com
putational burden ifn is large. Fortunately, theC21 eigen-
vectors ofSb corresponding to theC21 nonzero eigenval-
ues can be found by solving a much more tractableC3C
problem.8

4.1.3 Combination of direct and weighted LDA

From the discussion in the previous section, it would se
desirable to exploit the benefits of W-LDA and D-LD
simultaneously. There are, however, a couple of poten
issues that must be recognized and overcome. First,
note that the computation ofSb for W-LDA, as given by
Eq. ~6!, first requires the computation ofSw , which is a
largen3n matrix ~wheren53193 in our case!. The matrix
Sw is required since Mahalanobis distance is used forD i j

and, as shown in Eq.~7!, Sw
21 is required in the computa

tion. Noting the need forSw
21 leads us to another potentia

difficulty; one of the primary motivations for D-LDA was
the preservation of the nullspace ofSw . If the null space of
Sw is nonempty, thenSw

21 does not exist.
We propose the following approach to address th

problems. First, recalling Eq.~6!, we make the mild as-
sumption thata(D i j ).0. Note that this assumption implie
that no two classes have equal means and thatSw

21 exists
~or is replaced with an alternative!. In this case, the
nullspaces ofSb from Eqs. ~5! and ~6! are equivalent.
Hence we can remove the nullspace by projecting onto
(C21)-dimensional column space ofSb . Recall that the
column space ofSb can be found by eigenanalysis of
much more tractableC3C matrix. Once we have projecte
to theC21 column space, we computeSw in the reduced
space and, if it is nonsingular, we simply proceed w
W-LDA as already described.

If, however,Sw is indeed singular in the column spac
of Sb , we can use a pseudoinverse. We note, however,
Sw is generally never singular in the column space ofSb so
long as we have at least two samples in every class~i.e.,
two top-down subimages associated with each sidew
cluster!. This is always the case in our system, hence
projection ofSw is full rank.
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We can now describe the complete DW-LDA algorith
with the following six steps:

1. LetBPRn3r be an orthonormal basis for the colum
space ofSb

0 , the between-class scatter matrix in th
original space. Remove the nullspace of the betwe
class scatter matrix by projecting all samples ontoB:
xPRn→BTxPRr .

2. In the reduced spaceRr , computeSw . If Sw is full
rank, computeSw

21 ; otherwise compute a pseudoin

verseŜw
21 .

3. ComputeSb using Eq.~6! with a i j given by Eq.~8!
andD i j given by Eq.~7!. If Sw is singular, then use a

pseudoinverse,Ŝw
21 , when computingD i j .

4. WhitenSb :
Sb→WTSbW5Ir 3r ,

Sw→S̃w5WTSwW,
whereW5CG21/2 is the whitening transformation o
Sb with C being the eigenvectors ofSb and G the
diagonal eigenvalue matrix.

5. DiagonalizeS̃w :

S̃w→Dw5VTS̃wV,

whereDw is the diagonal eigenvalue matrix ofŜ, and
V contains the corresponding orthonormal eigenv
tors.

6. Assume that the eigenvalues and eigenvectors ofDw
and V are sorted in ascending order, possibly w
some zeros inDw . To maximize the LDA criterion in
Eq. ~3! while reducing to dimensionalitym, take the
first m columns of V, which correspond to them
lowest~some possibly zero! eigenvalues. The overal
resulting transformation matrixAPRn3m can then
be written as

A5BWVS I m3m

0(n2m)3m
D . ~9!

5 Experimental Results

In this section, we report results obtained using the p
posed system on real semiconductor data where diffe
sidewall shapes were produced by varying the focus
exposure~producing the F/E matrices we discussed pre
ously! of the lithographic tool. The available data set test
comprised five design rules, described as follows, with t
down images captured by one or more of three differ
CD-SEM tools:

1. 100-nm dense~2:1 pitch! lines, 47 cross sections with
126 top-downs

2. 100-nm isolated~5:1 pitch! lines, 94 cross section
with 269 top-downs

3. 180-nm dense~1:1 pitch! lines, 70 cross sections with
201 top-downs

4. 180-nm isolated~5:1 pitch! lines, 88 cross section
with 263 top-downs



Semiconductor sidewall shape estimation
Fig. 12 Examples of sidewall estimates (dotted lines) versus true sidewall shape (solid lines).
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5. 250-nm dense~1:1 pitch! lines, 113 cross section
with 113 top-downs

Hence, the complete set of available data comprised
sidewalls and 972 top-downs~complete top-down images
not subimages!. Having a data set with variations in lin
widths, line spacing, and imaging tool~CD-SEM! response
enables us to test the application over a wide range of
cumstances. From the 972 top-down images, we extra
9718 subimages (;10 per full-size top-down! according to
the process of Sec. 3.

Hold-one-out type tests were performed by removing
single sidewall and all corresponding top-downs from
training data when computing the transformation matrix
dimensionality reduction, as described in Sec. 4. Each
these hold-out top-downs was then submitted as a qu
The corresponding sidewall shape was estimated
weighted averaging~described in the following! and com-
pared to the true sidewall shape. This process was repe
for each of the 412 available cross sections, correspon
to 972 different top-down queries. For comparison to
newly proposed DW-LDA approach for dimensionality r
duction, we also tested D-LDA, PCA plus T-LDA~this is
the same method from our earlier work1!, and PCA plus
W-LDA.

Weighted averaging was employed to estimate the qu
sidewall shape, where the weighting is determined by
distances between the query and theK nearest top-downs
from the historical database~where various values ofK
were tested!. The distance between a full query top-dow
and a full historical top-down is defined by the closest p
of subimage feature vectors. In other words, letQ represent
the full top-down query image withq51,...,SQ subimages,
and letH with h51,...,SH subimages be a top-down in th
historical ~training! database. The distance betweenQ and
H, D(Q,H), is then defined as
2

-
d

f
y.

ed
g

y

D~Q,H !5 min
q51,...,SQ
h51,...,SH

d~zq ,zh!, ~10!

where zq and zh represent the subimage feature vecto
computed according to Secs. 3 and 4, for subimageq of full
top-downQ and sub-imageh of full top-down H, respec-
tively. For the reported experiments, Euclidean distan
was used for the distance measured(•). For a given query
imageQ, D(Q,H) was computed for every top-downH in
the training set and sorted in ascending order. The side
width curves corresponding to the closestK historical top-
downs were used to estimate the query sidewall sha
ĉ(Q) ~as a vector!, as follows:

ĉ~Q!5(
i 51

K

a ic~Hi !, ~11!

wherec(Hi) is the sidewall of nearest-neighbori and the
weighting factors are given by

a i5F(
i 51

K
1

D~Q,H j !
G21

1

D~Q,Hi !
, ~12!

so that( ia i51. The number of nearest neighbors used
the tests was allowed to take on valuesK51,...,50. Figure
12 shows two examples of sidewall estimates~dotted lines!
and the true sidewall shape~solid lines! corresponding to
the submitted top-down image. In this figure, the horizon
axis units are in nanometers and the vertical scale is
centage of line height. Notice the estimates not only p
vide a good approximation to the top roundness, but
roughness of the sides and the footer shape are also clo
estimated. While these figures show the capabilities of
Journal of Electronic Imaging / July 2004 / Vol. 13(3) / 483
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Fig. 13 Average root mean square (left) and average maximum absolute (right) error over all hold-out
data (as a percentage of design rule linewidth) versus number of nearest neighbors used.
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technique, measures are necessary to quantify the pe
mance of the sidewall estimation technique over the en
set of test data. Root mean square and maximum abso
errors were chosen as the performance measures.

We computed the root mean square and maximum a
lute errors~normalized by the design rule linewidth! for the
estimated sidewall shape of every top-down hold-out us
the four different dimensionality reduction methods me
tioned ~DW-LDA, D-LDA, PCA1T-LDA, PCA1W-
LDA !. The average of these errors across all top-down q
ries is plotted against the number of nearest neighbor
Fig. 13, where the vertical axis represents the error divi
by the design rule linewidth as a percentage~i.e., an error
of 5% for a 100-nm design rule implies a 5-nm error
width!. We can note from the plots in Fig. 13 that DW-LD
performs better than all of the other approaches. Inter
ingly, D-LDA actually performs worse than all of the othe
techniques, including PCA plus T-LDA; this is contrary
some results that have been previously reported.11 We be-
lieve this is because the D-LDA may tend to preserve no
features that seem to be discriminative in the training d
but that do not generalize well to the testing data. The P
first approach, however, would minimize the impact
such noisy features.

Figure 14 shows the error distributions~using all 972
hold-outs! at various positions along the vertical extent
the sidewall usingK515 nearest neighbors with DW-LDA
Note that the largest errors are seen near the top~95%! and
bottom ~5%! of the sidewall, but that the overwhelmin
majority of these errors are still within610%.

Finally, we note that the errors reported here are, in fa
about the same or slightly higher than those reported in
earlier approach.1 For example, as seen in Fig. 13~a!, DW-
LDA achieves an average root mean square~rms! error of
about 1.8%, while in our previous paper we reported
average rms error of about 1.7%. Similarly, here
achieve an average maximum absolute~MA ! error of about
5.7%, while we previously reported an average MA error
about 5.5%. We hypothesize two possible explanations
this. First, since our extracted subimages are much sm
here, we actually used less total area of each top-do
image to make the experiments easily implemented w
current computational resources. In the previous effort,
rnal of Electronic Imaging / July 2004 / Vol. 13(3)
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had available and used 6629 full-line subimages~each three
times the linewidth design rule square!; here we had avail-
able 47,140 line-edge subimages but only used 97
Hence our training data was effectively less diverse. We
currently adapting the existing code to make better use
this larger training set. The second hypothesis is that
actual linewidth is more correlated with the sidewall sha
~at least in our currently available data! than we suspected
To test this hypothesis, we intend to append some full-l
features to the line-edge feature vectors in future work.

6 Conclusions

We presented an image retrieval system for estima
semiconductor sidewall shapes from top-down scann
electron microscopy images. Since this system is trai
with historical data in the form of top-down/cross-secti
image pairs that are already collected in F/E matrices a
part of process setup, and the system requires no new h
ware using top-down SEM images already being taken
CD-SEM tools for process control, the system can be ea
introduced to the semiconductor fab to estimate sidew

Fig. 14 Sidewall shape error distributions (as a fraction of design
rule linewidth) at various points along the sidewall height (top of line
structure is 100%, bottom is 0%).
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Semiconductor sidewall shape estimation
shape. Use of this system would only require the additio
effort of building the historical database, which would
done as a part of process setup.

We presented details on the feature extraction porti
of this system and the dimensionality reduction metho
applied to the problem. We present a new approach
dimensionality reduction called DW-LDA. Experiment
results indicate that the proposed system can estimate
wall shape quite accurately and that DW-LDA is the best
several other linear dimensionality reduction techniqu
Hold-one-out testing has shown results of approximat
1.8% rms error between the estimated sidewall shape
the actual sidewall shape. Thus for a 100-nm line, the
error is 1.8 nm.

Future extensions of this research should include inv
tigation of other discriminating features that may be e
tracted from the top-down images to improve performan
and investigation of whether the training set needs to
rebuilt for various process changes~line width, CD-SEM
tool changes, material changes, etc.!.
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