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Objectives

Provide rigorous framework for uncertainty 
management for general analysis codes used 
routinely in design:

Estimate uncertainties, (via UQ) 
Understand uncertainties, (via SA coupled with UQ)
Reduce uncertainties (Inverse/Adaptive Analysis)

Realize potential of increasingly promoted role of 
modeling and simulation in design of nuclear 
systems



Objectives

Predict best-estimates responses and their 
uncertainties originating from:

Input data (including correlations) epistemic (reducible) 
and aleatory (irreducible) uncertainties
Initial and boundary conditions errors
Homogenization theory errors

Currently not treating modeling errors, numerical 
errors, interaction between various error sources
Efficiency, ease of implementation, and 
transferability to different codes systems



Relevance

Define required system design margins
Identify key input data and associated models 
contributing most to quantified uncertainties
Alter design to make it less sensitive to identified 
key sources of uncertainties
Optimize experiments design to reduce uncertainties
Increase design freedom by reducing design margins 
realized by higher fidelity calculations
These goals to be achieved via simulation to minimize 
reliance on expensive experiments



Nuclear Reactors Modeling

Nuclear models involve a 
wide range of energy and 
length scales varying by 
several orders in magnitude

Fully resolved description of 
reactor is not practical even 
with anticipated growth in 
computer power over 
foreseeable future

Multi-level homogenization 
theory adopted to render 
reactor calculations in 
practical run times with 
reasonable accuracy

Fuel
Gap

Clad

Uranium is contained 
in Ceramic fuel pellet

Stack is contained 
in metal rod

Rods are bundled 
together in an assembly

Fuel pellets are 
stacked together

Assemblies are combined 
to create the reactor core

Spatial Heterogeneity of nuclear reactor core

Cross-Sections dependence on neutron energy



Mathematical Description

The ensemble average of neutron distribution in a 
reactor can be described by Boltzmann Equation:
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Framework Requirements

Consider a computational model describing an engineering system:

Sensitivity: Rate of Change of output with respect to input

Uncertainty: Confidence in calculated results

Adaptive Simulation: Reduction of calculations uncertainties and meeting 
target accuracy requirements

( )y x= Θv v

yvxv



Sensitivity Analysis

Characterize responses’ variations w.r.t various 
error sources to as many degrees as 
computationally possible.

Challenges: m,n very large for nuclear codes; thus 
leading to intractable computational burdens
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Linear-Based Uncertainty 
Management Requirements

One Code:

Multiple codes:
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Sensitivity Forward Approach

• Perturb input data one-at-a-time to calculate 
sensitivities of all outputs with respect to the 
perturbed input

• Suited for problems with few inputs and many 
outputs

• Variations:
– Simultaneously perturb all inputs based on 

their prior PDFs; repeat until the output 
PDFs converge

– Suitable for non-Gaussian distributions, 
and nonlinear systems.

– Difficult to infer sensitivity information
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Sensitivity Reverse Approach

• Generalized Perturbation Theory
– Based on select output response, constructs adjoint model 

to calculate the response sensitivities with respect to all 
input data

– Suited for problems with many inputs and few outputs
– Difficult to implement for legacy codes, particularly for 

coupled code systems
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Structure of Typical LWR Models

MG XS

Lattice Calcs 

FG XS

Core Calcs

keff, power, 
flux, margins, 

etc.

ENDF MG Gen Codes 

6# of Data > 10 410

610

510

Runtime ~ mins

hrs

mins



Philosophy of Subspace Methods

In Euclidean sense, one can change n inputs to a 
computational model in n different ways, however, 
for most complex codes, only a subset r<<n leads 
to noticeable changes in outputs.
Active Degrees of Freedom denote the various 
changes in inputs leading to changes in outputs.
Most outputs of interest to designers and operators 
are often integral quantities, e.g. power, reactivity, 
thermal margins, etc., (hence dimensionality 
reduction)



Active and Inactive DOFs: Example

Consider a simple model with one output response 
(energy produced from fission) and n input data 
(fission cross-sections of n different isotopes)

Consider inverse problem:
How to select    for some E? 
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Subspace Methods

• Replace original I/O streams by mathematical subspaces
• Subspaces are mathematical abstractions denoting 

change of basis in the I/O streams:
– Create new I/O variables (called active DOFs).
– Dimensions of subspaces are much smaller than original I/O 

streams
– Each variable (active DOF) is a linear combination of all original 

variables, with weights reflecting importance of original variables
– Subspaces identified by means of stochastic approach involving 

randomized matrix-vector and matrix-transpose-vector products
– Mathematically, this process is equivalent to finding rank 

revealing decomposition of sensitivity and uncertainty matrices
– Requirement: matrices be ill-conditioned



Subspace Methods
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Active DOFs
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Subspace Methods:
Rank Revealing Decomposition
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Singular Values Spectrum

Singular Value Triplet Index
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Relation to Past Work?

The idea of dimensionality reduction has been 
exploited by mathematicians, scientists and engineers 
from various scientific backgrounds, e.g. Taylor Series 
Expansion, Nodal (Polynomial) Expansion Methods, 
Principal Component Analysis, rank of matrix operator, 
information capacity in communication, principal 
component analysis in statistics, etc. 
Challenge: How to choose the ‘optimum subspace’
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Background for Subspace Methods
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Singular Value Decomposition (SVD) 
is the algebraic version of SVE 
(Eckart and Young 1936-1939):

Singular Value Decomposition (SVD) 
is the algebraic version of SVE 
(Eckart and Young 1936-1939):

Every square-integrable kernel has mean 
convergent singular value expansion of 
the form (Schmidt 1907-1908):

Every square-integrable kernel has mean 
convergent singular value expansion of 
the form (Schmidt 1907-1908):

Dimensionality reduction induced by a multi-level 
homogenization-type model can be described by 
Fredholm integral Equation of the first kind

Dimensionality reduction induced by a multi-level 
homogenization-type model can be described by 
Fredholm integral Equation of the first kind
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Subspace Methods for Chained Codes

Consider a multi-level model composed of k sub-models 
(also applies to various components of a single sub-model):
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Active DOFs in Complex Modeling

Small active DOFs implies high degrees of 
correlations among input data and output responses.
Many modeling strategies of complex systems rely on 
concept of multi-level homogenization, where series of 
models varying in complexity (high resolution vs. low 
resolution models) are linked to model system 
macroscopic behavior starting from very detailed 
microscopic level. At each modeling stage, a certain 
reduction in problem dimensionality is achieved.



Uncertainty Management for BWR: 
Based on PhDs of Abdel-Khalik and Jessee



BWR Case Study:
Based on work of Dr. Matthew Jessee

AMPX – ORNL ENDF Processing Code System
Processes ENDF covariance data into 44 
group energy structure
SCALE5.0 libraries (PUFF3)
1. 44GROUPV5COV - 29 isotopes including 

H, B, Al, U, Pu, and Minor Actinides et al.
2. 44GROUPANLCOV - 30 additional 

isotopes including Gd, Sm, Zr, et al.
SCALE5.1 libraries - Evaluations for V5 and 
V6 covariance data

TRITON - ORNL lattice physics code
GE14 10x10 lattice design 

Multi-group 
cross-sections

TRITON

Few-group 
cross-sections

FORMOSAB

keff, power 
distributions



BWR Case Study

Few-Group Cross Sections – lattice-
averaged few-group cross-section 
functionalized for various fuel colors, void 
fractions, and branch cases

FORMOSAB – NCSU’s core simulator 
GE BWR/3 reload core design
Cycle Exposure ~16 GWD/MTU
Number of FAs = 560

Multi-group 
cross-sections

TRITON

Few-group 
cross-sections

FORMOSAB

keff, power 
distributions
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Uncertainty Propagation (Part 1)

GOAL: propagate infinitely-dilute MG cross-sections 
covariances and Resonance Parameter covariances to 
a self-shielded MG covariance matrix

Provided covariance data:
44-group cross-section covariance matrices for 
infinitely-dilute cross-sections (44GROUPV6REC library 
from ORNL)
Majority of High fidelity covariance data generated from 
ENDFBV6 data files
Low fidelity covariance data processed from tabulated 
covariance data in Atlas of Resonance Parameters 
(Mughabghab)
Resonance Parameter Uncertainties for U-235, U-238, 
Pu-239, Pu-240, Pu-242, Am-241, and Gd Isotopes 
Resonance Parameter covariance data in multiple 
formats (SLBW,Reich-Moore) from multiple libraries 
(ENDFB5V5,V6,V7)
Covariance data is used to construct a relative
covariance matrix
Using relative covariance data, differences in formats 
and libraries are assumed negligible

CMG & CRP

Unit Cell

CSS
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Uncertainty Propagation (Part 1) (cont.)

Unit Cell Calculation:
Bondarenko factor treatment (unresolved 
resonance energy range) (BONAMI code)
Nordheim Integral Treatment (resolved 
resonance energy range (NITAWL code)
Limited to SLBW or MLBW resonances
Cannot treat resonance interference effects
Self-shielded MG cross-sections are calculated 
as:

The correction factor (Δ) is strongly dependent on:
Resonance Parameter
Number Density of the Resonance Absorber
Fuel Temperature
Background Moderating Power in the fuel region
Dancoff factor 

CMG & CRP

Unit Cell

CSS

S S IDσ σ= + Δ
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Uncertainty Propagation (Part 2)

GOAL: Calculate few-group cross-section 
covariance matrix from self-
sheilded cross-section covariance 
matrix

2000 singular vectors of CSS –> too 
many lattice physics calculations

1500 singular vectors were discarded 
based on a sensitivity analysis of lattice 
k-infinity and power peaking factor at 
BOL and EOL

The remaining 500 singular vectors 
are used to adjust the Δ’s for 
adaptive simulation

10 Lattice designs used to compute FG 
cross-section covariance data for all 
possible pin-by-pin enrichment 
distributions

CSS

Fuel Lattice

CFG
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Uncertainty Propagation (Part 3)

GOAL: Calculate core-
observables covariance 
matrix from few-group 
cross-section covariance 
matrix

rank of CFG is 350
Calculate CCO using matrix-
free approach

350 core simulator 
calculations
~5 min / FORMOSA-B run 

CFG

Core Simulator

CCO



Propagated BWR Attributes Uncertainties

Core keff Uncertainty
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Core k-eff uncertainty
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Propagated BWR Attributes Uncertainties

Nodal Power Uncertainty
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Core Nodal Power Uncertainty
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Adaptive Core Simulation
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Adaptive Core Simulation
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Adaptive Core Simulation
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BWR: I/O Streams SVDs

10
0

10
2

10
−10

10
−5

10
0

Singular Value Index

R
el

at
iv

e 
Si

ng
ul

ar
 V

al
ue

 

 

ENDF

MG

MG2

FG

CA



Conclusions

Can do:

Linear model with many inputs and few outputs (adjoint)

Linear model with many outputs and few inputs (forward)

Nonlinear and bifurcated models with few inputs (higher order statistical 
sampling techniques)

Linear model with many inputs and many outputs (ESM)

Trying to do:

Nonlinear models with few inputs coupled with linear model with many 
inputs/outputs (Extension of ESM)

Application to Monte Carlo models

Cannot do yet:

Nonlinear/bifurcated models with many inputs

Understand interaction between numerical/modeling errors and input data 
errors


