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Outline

• Nuclear fuel fundamentals – an introduction
• Current nuclear fuel
• Problems with current fuel (focus of current research)
• Near-term developments
• Distant future (hopes and dreams)
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Fuel Is “Active” Part of Reactor

• High atomic mass nuclei (primarily 235U and 239Pu) undergo 
fission

• Each fission releases
– ~200 MeV of energy, and
– fission products.

• Competing reactions also generate higher actinides (minor 
actinides)

• Need gas-tight barrier (cladding) around fuel for containment of 
fuel, fission products, and higher actinides
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Three Key Parts Are Pellet, 
Element/Rod/Pin, and Assembly
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Following Considerations Impact Selection 
of Fuel Material

• Sufficient geometric stability during operation

• Satisfactory thermal properties during operation

• Acceptable chemical compatibility with cladding

• Adequate fissile atoms density

• Sufficient chemical compatibility with coolant, in case of 
clad breach

• Compatibility with rest of fuel cycle
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Following Considerations Impact Selection 
of Cladding Material

• Mechanical properties required for operating conditions 
(strength, creep, etc.)

• Satisfactory chemical compatibility with coolant
• Acceptable chemical compatibility with fuel
• Sufficient resistance to irradiation effects 

(embrittlement, swelling, etc.)
• Low neutron cross section
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Meticulously Controlled Initial State Almost Immediately 
Destroyed During Irradiation

As Fab
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AS FABRICATED

• Equiaxed Grains
• Equilibrium Pores to 50 μm
• Large Voids, ~ 200 μm
• Small Cracks (radial)
• Intrinsic Vacancy 
• Intrinsic Impurity
• Large Gas Gap

gas gap

AS IRRADIATED

•Crack Evolution
•Radiation Defects

•Vacancy/Interstitial
•Dislocations
•Small Clusters
•Voids (central void)

•Columnar Grain Growth
•Grain boundary

•Carbide formation
•Equiaxed Grain Growth
•Metallic Inclusion
•Solid Solution Impurity
•Second Phase Formation
•Evolving gas conduction
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This Restructuring Can Be Readily 
Observed During PIE
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• Nuclear fuel fundamentals – an introduction
• Current nuclear fuel
• Problems with current fuel (focus of current research)
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Nuclear fuel – commercially today – almost  by 
default means low-enriched uranium oxide in 
zirconium-alloy tubes

• This UOX used in almost all world’s PWRs, BWRs, 
PHWRs, and RBMKs

• Mostly produced through enrichment of natural uranium 
(~65,000 MT/yr natural U/yr)

• Supplemented with limited addition of recycled 
(reprocessed) uranium (only about 2500 MT/yr nat-U 
equivalent)

• Natural uranium reserves more than adequate to fuel 
likely nuclear power programs over the coming decades 
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Low-enriched UOX pellets in zirconium-alloy 
tubes not ideal

• Has notable technical disadvantages, 
including 
– Low thermal conductivity, resulting in high centerline temps
– Burnup limited to only about 5% (currently) of initially loaded 

HM

• However, over past sixty years, has been 
refined to such an extent that
– It is very reliable (about 1 failure per million)
– It is relatively inexpensive and mass-produced (~ 

commoditized)
– Generally meets needs of utility customers, and no incentive 

to try for radical advancements



12 Managed by UT-Battelle
for the U.S. Department of Energy

But…It is very expensive and time 
consuming to qualify new fuel, especially 
anything other than incremental change

• Need materials testing

• Need irradiation testing (research reactors)

• Lead test assemblies (few, perhaps multiple sets, in power 

reactor)

• Batch loading

>$100M
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Nuclear fuel makes up a small part (<20%) 
of overall busbar cost of nuclear electricity 
production

• Thus, there is no overarching economic incentive to 
take risks with advanced fuels

• Risk (technical and licensing) and potential costs of 
failure outweigh potential savings, in most cases

• Only small incremental (low risk) advances are pursued 
vigorously

• Significant changes to front end or back-end costs 
($0.001/kW-h NWPA fee) may change this economic 
situation at some point in future
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Mixed uranium-plutonium oxide (MOX) fuel is 
next most common fuel in terms of volume

• Uses fissile isotopes of plutonium to replace U-235 
• Pellets, rods, and assemblies are really not very 

different from LEU and perform similarly
• Historically, was to conceived to be a “stepping stone” 

or temporary fix to bridge gap to plutonium fuel cycle 
with fast reactors 

• At currently anticipated U prices, MOX presents clear 
commercial disadvantages

• Implemented primarily for reasons other than 
economics (energy self-sufficiency, sustainability)

• Only a few hundred fuel assemblies/yr (few % total)
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After years of dedicated R&D, 
performance of UOX fuel greatly 
optimized

• Nevertheless, goal of “perfect” fuel not yet achieved
• Some failures continue, due to:

– Fretting (debris and grid)
– Water side corrosion
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Debris fretting situation improving, 
through control of foreign objects and 
through assembly design

Source, July 09: www.gepower.com/prod_serv/products/nuclear_energy/en/downloads/def_deb_filter.pdf

http://www.gepower.com/prod_serv/products/nuclear_energy/en/downloads/def_deb_filter.pdf
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Filters now incorporated into lower portion 
of fuel assemblies

Source July 09: www.westinghousenuclear.com/Products_&_Services/docs/flysheets/NF-FE-0015.pdf
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Unfortunately, coolant must enter assembly - thus debris 
fretting not yet eliminated

Source July 09: www.gepower.com/prod_serv/products/nuclear_energy/en/downloads/def_deb_filter.pdf

http://www.gepower.com/prod_serv/products/nuclear_energy/en/downloads/def_deb_filter.pdf
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Unusual corrosion due to water-chemistry 
problems also continues
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Crud-enhanced corrosion can be severe
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Bottom line – UOX fuel performance very 
good

• Fuel failures are now big news (uncommon)
• Remaining failures are not safety issue, but economic 

issue and perception problem
– EPRI estimates $40-80M per event for lost generation, 

inspection, replacement fuel, etc.

• Efforts to reduce failures continue, through initiatives 
such as EPRI’s “Zero by 2010”
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Past as prologue…

• For past twenty years at least, focus has been on slow, 
incremental improvements in
– cladding alloys, 
– pellet and cladding processing,
– design (removing conservatisms),
– manufacturing, and
– operations (foreign object control, chemistry).

• This incremental approach probably to continue 
unabated for next twenty years or longer.
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Beyond such incremental improvements, three 
fuels other than standard UOX/MOX are likely to 
be implemented over next 20 years

• Minor-actinide bearing fuels
• Vibration compacted particle fuel (vipac)
• Coated-particle fuel, for use in high-temperature gas 

reactors and possibly other applications
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Minor actinide fuels – another whole world 
in and of itself

• Options range from minor Np-additions to “standard” 
MOX product to full inert-matrix minor actinide targets

• MA-MOX fuels and/or MA LWR targets are required if 
sustainability is to be achieved in near term because 
only LWRs exist in sufficient numbers

• AFCI program, one of DOE’s largest fuel programs, 
investigating various MA fuels, among other options

• May include zirconium-matrix metal alloy fuels as well
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Vipac, based on NIIAR process, to be 
implemented for BN800 SFR in Russia

• Oxide granules (sand) produced from electrorefining in 
molten chloride salts

• Resulting oxide mass crushed and sieved
• Proper proportions mixed and loaded directly using 

multifrequency vibration
• Metal oxygen getter additive increases smear density
• Process to be used in pilot production facility (~10 

MTHM/yr) in Russia within decade
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Coated particle fuel development driven primarily by 
need for high-temperature nuclear process heat 
(NGNP and other similar HTGRs)
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Beyond next 20 years, many additional 
opportunities available

• More exotic options have been proposed – “hopes and dreams” fuels

• Some, such as SiC clad on UN, have very high potential, but are far from 
commercial application

• Exotic options touted by proponents as “better than sliced bread” or “offering 
a solution to everything”
– Often characterized by excessive marketing hype
– Must sound far better than current fuel to generate interest in trying to 

topple dominance of UOX, a known product with a good track record

• With few exceptions, most of these options have already been researched, 
sometimes extensively, but history is forgotten or unknown or ignored

• Would like to provide two distinct examples, RTPI and more general ThO2 fuel
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Radkowsky Thorium Plutonium Incinerator 
(RTPI) is poster child for hype over substance

• Concept uses a two-part “seed and blanket” concept to 
tap underappreciated value of thorium

• Burns up weapons-grade plutonium, leaving little 
residual plutonium
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RTPI Seed-Blanket Unit Consists of Pu-Zr Inner Seed and 
Outer (U,Th)O2 Blanket

- Inner Seed: 108 twisted 
trefoil rods 10% Pu-Zr alloy
- Outer Blanket: 228 
UO2-ThO2 fuel rods 
(20% enriched uranium)
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RTPI, after extensive review, determined to be mostly 
unsubstantiated hype

• Key to concept is use of Russian technology for co-extruded metal 
alloy fuel in seed region

• Similar co-extruded U-Zr fuel currently used in Russian propulsion 
reactors (KLT-40S), but with far simpler geometry

• No experience with proposed Pu-Zr alloy, neither production nor 
irradiation

• Very limited attempts to co-extrude complex twisted trefoil 
geometry with simulators and U-Zr, but not at required 3-4 m 
length

• U-Zr and Pu-Zr have distinctly different phase diagrams in 
temperature and mass contents of interest to RTPI concept (affects 
extrusion and irradiation performance)

• No benefit found in retaining namesake thorium blanket
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Underlying technology originated not in 
Russia, but within USAEC

• U-alloys co-extruded with zirconium-alloy cladding were 
investigated by USAEC and their subcontractors in 1950s and 
1960s.

• U-alloy extrusion under conditions of superplasticity for fuel 
applications was essentially forgotten in the U.S., but utilized in 
Russia for propulsion reactors such as KLT-40S (icebreaker fleet, 
floating power plants)

• U.S. backers of RTPI concept were completely unaware of 
domestic history and promoted U-Zr extrusion technology as 
unique to Russia

• Reviewers found this only through deep mining of open-source 
archives
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A second example of hype over 
substance is “standard” ThO2 fuel

• Thorium fertile, but not fissile, so mixed with uranium 
oxide, either homogeneously or heterogeneously

• Bred U-233 usually burned in-situ
• Shippingport light-water breeder reactor demonstration 

tested this type of ThO2 fuel extensively
• ThO2 fuel has been tested since by many organizations 

independently
• Generally good performance, but

– Difficult (and expensive) to fabricate
– Difficult to reprocess (and thus also to recycle dirty scrap)
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Thorium Energy Independence and Security 
Act of 2009 (introduced bill, but not passed)

• Promotes use of thorium fuel on basis of energy 
independence

• Promoted by owner of mineral rights (Thorium Energy, 
not related to RTPI’s Thorium Power)

• Their focused lobbying led to multiple introductions of 
this bill over past few years, which calls for $250M 
funding ($50M/yr over five years)

• Intended to support development of domestic thorium 
fuel cycle including mining of thorium deposits in Lemhi 
Pass, Idaho
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Apparently unknown to promoters, <5 years 
ago, U.S. government buried its thorium 
stockpile at NTS

• More than 7M lbs 
thorium buried

• No market or use for 
material could be found
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So…Is there anything new under the sun?

Maybe??? But it is just as likely that it has already been 
tried.
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Conclusion

• As for future nuclear fuels, always have
– an open mind, but  
– healthy skepticism of “next great thing”

• UOX has inertia for many reasons
– It works well enough
– It is relatively inexpensive

• If someone pushes next great thing, do some digging – 
it probably has already been tried

• Most of the “next great thing” ideas have scientific merit 
and are very interesting from research perspective, but
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Conclusion (cont.)

• It takes a long time and a lot of money to go from a 
concept to a proven fuel qualified for use in a 
commercial power reactor

• Broad knowledge of what has been tried and what has 
been proposed can be really beneficial,
– not only to short-circuit proposals that have already been 

tried,
– but also for cross pollination.
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