
Managed by UT-Battelle
for the Department of Energy

SQE By Parts

Tom Evans

Radiation Transport &
Criticality Group

2 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Outline

1. Unit Testing, Software Verification, and SQE

2. Acyclic Software Design

3. A Real Example

4. Design-by-Contract©

5. Advantages and Disadvantages

6. Testimonials

7. Conclusions

3 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Research and SQE

A particular challenge of scientific computing is managing
SQE with discovery. We maintain that software
verification is a necessary prerequisite for methods and
algorithm development.

Consider a new algorithm implemented in a
multidimensional, parallel code. Theory predicts second-
order convergence. Computational results are first-order
instead of second-order. Is this a code bug or an
oversight in analysis?

In other words, software quality and methods research
are not only compatible, they are essential. In particular,
we will look at techniques we use for software verification.

This is especially true for parallel scientific software,
which is much more difficult to design, test, and analyze
than serial software.

4 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Unit Testing and SQE

•

SQE is the practice of managing the cost and
quality of a software product.
– The cost of defect repair increases with time from

the defect introduction.
– Unit testing optimizes cost and quality by finding

code and requirement defects at code
construction time.

– Used in concert with peer review (especially for
requirements), this can significantly reduce the
cost of software development.

5 Managed by UT-Battelle
for the Department of Energy SQE by Parts

The Difficulty of Requirements in
Scientific Software

•

Requirements can be very difficult to pin down in
scientific software development:
– the vector keeps changing as new things are learned
– as a community we often know what we want, but aren’t

necessarily good at saying it

•

Unit-testing helps disambiguate language-based
requirements into functional specifications.

•

Also, as requirements change, unit-testing helps
ensure that the software is keeping pace.

•

Agility is key in scientific software development:
– rapid prototyping
– testing new methods, algorithms, and features

6 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Unit Testing is a method of software verification

Unit Testing

•

It ensures that each part of the software performs its
contracted task.

•

The effectiveness of unit-testing is greatly enhanced
by the following two code-design practices:
– Acyclic code design
– Design-by-Contract

We practice a method of unit testing in
which the unit test is written either before,
or concurrently with, the executable code.

7 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Acyclic Software Design

There are no physical or
logical cyclic dependencies.

This allows hierarchical testing.

8 Managed by UT-Battelle
for the Department of Energy SQE by Parts

An Example - First Collision Source

•

The first collision source technique is used
to mitigate ray-effects resulting from the
angular collocation method discrete
ordinates transport codes.

In order to calculate the
moments of the intensity, we
must calculate

which requires ray-tracing
through the mesh.

9 Managed by UT-Battelle
for the Department of Energy SQE by Parts

First Level - Ray_Tracer

•

Let’s look at the class diagram for the first-collision
source part of the code:

•

We can write a unit-test that unambiguously tests
the interface of Ray_Tracer.

10 Managed by UT-Battelle
for the Department of Energy SQE by Parts

tstRay_Tracer.cc

class Test_Tracer : public Ray_Tracer
{

private:
typedef Ray_Tracer Base;

public:
Test_Tracer(SP_Mesh mesh, SP_Indexer indexer,

SP_Mat_DB mat)
: Ray_Tracer(mesh, indexer, mat) {/* …

*/}

void initialize_xs() {/* …

*/}

int trace_block(Ray &ray, const Point &p)
{

const def::Vec_Dbl &x = b_mesh->edges(I);
const def::Vec_Dbl &y = b_mesh->edges(J);
const def::Vec_Dbl &z = b_mesh->edges(K);

return Base::trace_block(ray, p, x, y, z);
}

};

First, we make a test
tracer that will simply
trace through a block
of mesh.

11 Managed by UT-Battelle
for the Department of Energy SQE by Parts

tstRay_Tracer.cc
void block_test(Parallel_Unit_Test &ut)
{

Ray_Tracer::SP_Mesh mesh;
Ray_Tracer::SP_Indexer indexer;
Ray_Tracer::SP_Mat_DB mat(new denovo::Mat_DB(mesh->d_num_cells));

// …

initialize data objects (already unit-tested)

// make the raytracer
Test_Tracer rt(mesh, indexer, mat);

// initialize the ray-tracer

cross sections
rt.initialize_xs();

// make a Ray
Ray ray;
{

ray.tau.resize(2, 0.0);
ray.p = Ray::Point(0.5, 0.5, 0.5);
ray.index = Ray::Indices(0, 0, 0);

}

Setup the test ray tracer.

12 Managed by UT-Battelle
for the Department of Energy SQE by Parts

tstRay_Tracer.cc
UNIT_TEST(rt.trace_block(ray, Ray_Tracer::Point(5.5, 0.5, 0.5)) == 0);
UNIT_TEST(soft_equiv(ray.tau[0], 5.0));
UNIT_TEST(soft_equiv(ray.tau[1], 10.0));
UNIT_TEST(soft_equiv(ray.p[0], 5.5));
UNIT_TEST(soft_equiv(ray.p[1], 0.5));
UNIT_TEST(soft_equiv(ray.p[2], 0.5));

// …

test more points

// test edges

// LOW-X
ray.p = Ray::Point(3.1, 3.4, 1.0);
ray.index = Ray::Indices(3, 3, 1);
ps = Ray_Tracer::Point(-0.2, 3.5, 1.1);
UNIT_TEST(rt.trace_block(ray ,ps) == 1);
// …

if (ut.numFails == 0)
ut.passes(“Ray-tracing successful on a block of mesh.”);

}

Now we proceed to test the ray-tracing as compared
to hand calculations to ensure the code produces the
correct output.

13 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Unit-Testing Harness

The test functions get tested in an automagically generated test
harness:

int main(int argc, char *argv[])
{

Parallel_Unit_Test ut(argc, argv, denovo::release);

try
{

// >>> UNIT TESTS (unit tests are added here)
block_test(ut);

}
catch (std::exception &err)
{

cout << "ERROR: While testing tstRay_Tracer, ”

<< err.what() << endl;
ut.numFails++;

}
catch(...)
{

cout << "ERROR: An unknown exception was thrown.”

<< endl;
ut.numFails++;

}
return ut.numFails;

}

14 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Test Output

> mpirun -np 1 ./tstRay_Tracer
===
=== Parallel Unit Test: tstRay_Tracer
=== Number of Processors: 1
===

tstRay_Tracer: version denovo-0_7_0

Size of Tiny_Int : 2

Test: passed
Ray-tracing to random points correct.

Test: passed
Ray-tracing from interior targets outside mesh correct.

Test: passed
Ray-tracing from edge to targets outside mesh correct.

Test: passed
Ray-tracing on a block of mesh successful on 0

**** tstRay_Tracer Test: PASSED.

Manual execution

User defined output
from each test

15 Managed by UT-Battelle
for the Department of Energy SQE by Parts

•

We can run the test through the make

system:

•

Thus, the unit-tests easily transform into a
regression suite that can be run regularly to verify
the code state.

Regression

> make check
===
========== tstRay_Tracer Output Summary =============

-

Number of Processors : 1
-

Number of Passes : 5
-

Number of Failures : 0
Unexpected : 0
Expected : 0

===

16 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Second Level - Ray_Source

•

We have verified the Ray_Tracer; now we move to
the Ray_Source:

•

And we continue …

17 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Resolve Potential Parallel Ambiguities

Unit-testing of Ray_Source

ensures only on-
block vertices are included in each source:
if (node == 0)
{

UNIT_TEST(source.num_rays() == 36);
UNIT_TEST(points.size() == 36);

UNIT_TEST(points[0] == Ray::Point(0.0, 0.0, 0.0));
UNIT_TEST(indices[0] == Ray::Indices(0, 0, 0));
UNIT_TEST(vertices[0] == 0);
UNIT_TEST(proc[0] == 0);

…

Finally, unit-testing at the next level
(DR_Ray_Tracer) ensures that the each
vertex in the mesh has the correct value of
τ.

18 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Testing the First Collision Source

•

Finally, we are ready to test the first collision source:

•

We can test the First_Collision_Source

knowing
that τ

is being calculated correctly, because we have

already tested the Ray_Tracer.

19 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Design-by-Contract©

•

DBC enforces a function “contract” by testing the
input, execution, and output of a function.

•

In other words, DBC provides a software mechanism
for enforcing a design contract on a function.

•

DBC is also known as Programming by Contract and
Contract First Development.

•

See Meyer, Bertrand: Design by Contract, in
Advances in Object-Oriented Software Engineering,
eds. D. Mandrioli and B. Meyer, Prentice Hall, 1991,
pp. 1-50 for more details.

20 Managed by UT-Battelle
for the Department of Energy SQE by Parts

DBC Implementation

•

Some languages (Eiffel, GNU C2) have built in
support for DBC.

•

DBC is implemented in our codes using M4
(FORTRAN) or CPP (C/C++).

•

Types in C++ or FORTRAN modules are automatically
checked by the compiler:
– Require: input conditions
– Check: execution conditions
– Ensure: output conditions

•

DBC macros can be toggled at compile time to avoid
performance costs associated with in-code tests.

21 Managed by UT-Battelle
for the Department of Energy SQE by Parts

DBC Example - trace_block()
int Ray_Tracer::trace_block(Ray

&ray,
const Point

&target,
const Vec_Dbl &x,
const Vec_Dbl &y,
const Vec_Dbl &z)

{
Require (b_sigma.size() == b_mat->num_groups() * b_num_active);
Require (b_steering.size() == b_mat->num_mat());
Require (ray.tau.size() == b_mat->num_groups());
Require (b_ids.size() == (x.size() -

1) * (y.size() -

1) * (z.size() -

1));

// if we are on an edge and the target is outside the grid, simply exit
if (ray.index[I] == -1)
{

Ensure (target[I] -

ray.p[I] < 0.0);
Ensure (target[I] -

x.front() < 0.0);
return LOX;

}
// …

do all edges

Check (ray.index[I] >= 0 && ray.index[I] < x.size() -

1);
Check (ray.index[J] >= 0 && ray.index[J] < y.size() -

1);
Check (ray.index[K] >= 0 && ray.index[K] < z.size() -

1);

// call the FORTRAN ray-tracer kernel
BLOCK_TRACER(&x[0], &y[0], &z[0], &b_num_active, &b_ids[0], &b_steering[0],

&b_sigma[0], &target[0], &(ray.index[0]), &(ray.p[0]),
&(ray.tau[0]), &terminator);

// return the result of the trace
Ensure (terminator >= 0);
return terminator;

}

Valid argument
types are checked
by the compiler.

Input is in valid
state.

In-function check.

Valid output state.

Valid output state.

22 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Advantages

•

The purpose of unit-testing is to provide
software verification as close to code
construction time as possible.

•

When unit-testing is used in conjunction with
DBC and peer-review many advantages are
accrued:
– finds code defects at construction time
– makes porting to new platforms easier
– easier to find esoteric compile/link-time errors
– DBC can be used to verify interfaces to client

code

23 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Advantages, cont

– DBC incurs no cost in production code
– easier to run profiling, memory, and development

tools on unit tests than on a full executable
– unambiguous statement of code design

requirements
– provides an automated, explicit review of the code

•

a mechanism for review is to have one developer write
the test and the primary developer writes the code

•

when the test passes, the software component is
automatically reviewed

24 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Advantages, cont

– provides a sanity check on code refactors
– incorporating timing data allows a time-history

profile of code performance to be compiled:
•

run automated unit-tests nightly
•

as new code is developed compare timing histories to
catch inefficient or costly implementations

– provides simplified “usage” documentation for a
piece of code
•

in our example, a new developer could learn the ray-
tracing/first collision part of the code by studying the
unit tests

25 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Disadvantages

•

The most significant disadvantage is the perceived
cost associated with unit-tests.

•

Our experience shows a cost of between 4~8 to 1 in
writing code with unit-tests.

•

However, as we hope to show, this cost is minimal
compared to the debugging cost incurred
throughout a product lifecycle.

•

In other words, the disadvantages are few unless
you have developers who unfailingly write “Bug-Free
Code.”

•

Codes that are not structured according to acyclic
design concepts may have prohibitive unit-test
costs.

26 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Testimonials

•

We employed this technique in the LANL Jayenne
(IMC) project starting in 1998:
– in the first period of full-production runs (2000-2003), 1 user-

reported code bug (>1e6 CPU-Hours)
– IMC Project “Bug Pageant”, LANL CCS Division Review

2003:
•

5 random bugs implanted in code
•

all bugs found within 1 hour during presentation to the review
committee

•

Unit-testing/DBC used in denovo SN code at ORNL
(started July, 2007 / currently entering production
usage).

27 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Denovo Code Unit-Test Statistics

C++ Executable Code 7659
Unit-test Code 15144
DBC Statements 1102
C++ Comments 20680
FORTRAN Code 862
FORTRAN
Comments

542

Python Code 2280
Number of unit-tests 86
Comment-to-code 2.49
Unit-test-to-code 1.78
DBC-to-code 0.13

*Denovo makes significant use of Trilinos, GSL,
and BLAS, which are not included here.

28 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Code Coverage Tools

•

Test coverage tools (gcov, Bullseye, CTC++)
can aid in analyzing the effectiveness of unit-
testing

Function 'kba::Ray_Source::begin_J() const'
Lines executed:100.00% of 1

Function 'kba::Ray_Source::end_J() const'
Lines executed:100.00% of 1

Function 'kba::Ray_Tracer::post_receive(int, nemesis::Request&, std::vector<double, std::allocator<double> >&, int)'
Lines executed:100.00% of 6

Function 'kba::Ray_Tracer::post_send_J(std::vector<fields::Node_Field<double>, std::allocator<fields::Node_Field<double> > >
const&, int, int, nemesis::Request&, std::vector<double, std::allocator<double> >&, int)'
Lines executed:100.00% of 13

Function 'kba::Ray_Tracer::post_send_I(std::vector<fields::Node_Field<double>, std::allocator<fields::Node_Field<double> > >
const&, int, int, nemesis::Request&, std::vector<double, std::allocator<double> >&, int)'
Lines executed:100.00% of 13

Function 'kba::Ray_Tracer::fill_corner(int, int, std::vector<double, std::allocator<double> > const&,
std::vector<fields::Node_Field<double>, std::allocator<fields::Node_Field<double> > >&)'
Lines executed:100.00% of 8

Function 'kba::Ray_Tracer::send_corner(int, int, std::vector<fields::Node_Field<double>,
std::allocator<fields::Node_Field<double> > > const&, std::vector<double, std::allocator<double> >&, nemesis::Request&)'
Lines executed:90.00% of 20

Function 'kba::Ray_Tracer::communicate_corners(bool

const*, bool

const*, std::vector<fields::Node_Field<double>,
std::allocator<fields::Node_Field<double> > >&)'
Lines executed:75.00% of 52

29 Managed by UT-Battelle
for the Department of Energy SQE by Parts

Conclusions

•

Unit-testing, when coupled with DBC and
peer-review can dramatically reduce code
bugs.

•

Although this code practice costs a
significant fraction up-front, it has the
advantage of catching defects at
construction time; this will result in
significant savings downstream.

•

Furthermore, the cost of unit-testing is
quantifiable.

	SQE By Parts
	Outline
	Research and SQE
	Unit Testing and SQE
	The Difficulty of Requirements in Scientific Software
	Unit Testing
	Acyclic Software Design
	An Example - First Collision Source
	First Level - Ray_Tracer
	tstRay_Tracer.cc
	tstRay_Tracer.cc
	tstRay_Tracer.cc
	Unit-Testing Harness
	Test Output
	Regression
	Second Level - Ray_Source
	Resolve Potential Parallel Ambiguities
	Testing the First Collision Source
	Design-by-Contract
	DBC Implementation
	DBC Example - trace_block()
	Advantages
	Advantages, cont
	Advantages, cont
	Disadvantages
	Testimonials
	Denovo Code Unit-Test Statistics
	Code Coverage Tools
	Conclusions

