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Two Goals are Likely to Determine 
What is Required for Sustainability 

No Crude Oil                No Climate Change
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Athabasca Glacier, Jasper National Park, Alberta, Canada
Photo provided by the National Snow and Ice 
Data Center
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Traditional Sustainability Strategies 
Treat Each Fuel Cycle Separately

Separate Fuel Cycles will Not 
Eliminate Oil or Stop Climate Change
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07-062

Combined Fuel 
Cycles are 

Required for 
Sustainability 

That has Major 
Implications for 
Nuclear Energy
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Examples of 
Combined Fuel Cycles

6



Example:  Combined Nuclear-Fossil 
Liquid-Fuels Fuel Cycle 

Underground Refining
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C. W. Forsberg, “Changing Biomass, Fossil, and Nuclear Fuel Cycles for 
Sustainability”, American Institute of Chemical Engineers Annual Meeting, Salt Lake 

City, Utah, November 4-9, 2007.



Liquid-Fuels Fuel Cycle for Crude Oil
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Conversion of Fossil Fuels to 
Liquid Fuels Requires Energy 

Greenhouse Gas Releases and Energy Use Increase As Use Lower-Quality Feedstocks
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In-Situ Refining May Require a 
Nuclear Heat Source
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Fuel Cycle for 
Nuclear-Fossil Liquid Fuels



Example:  Combined Nuclear- 
Biomass Liquid-Fuels Fuel Cycle 

Process Energy from a Nuclear Reactor
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C. W. Forsberg, “Meeting U.S. Liquid Transport Fuel Needs with a Nuclear 
Hydrogen Biomass System’, American Institute of Chemical Engineers Annual 

Meeting, Salt Lake City, Utah, November 4-9, 2007.
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Fuel Cycle for Liquid Fuels 
from Biomass
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Biomass Production, Transport, and 
Fuel Factories Use Energy
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Logging ResiduesAgricultural Residues

Energy CropsUrban Residues

1.3 Billion Tons Biomass are Available 
per Year to Produce Liquid Fuels 

Available Biomass without Significantly Impacting U.S. Food, Fiber, and Timber
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Liquid Fuel Value From Biomass 
Depends Upon How It is Processed 

Measured in Equivalent Barrels of Diesel Fuel/Day
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The Nuclear-Hydrogen-Biomass 
Liquid-Fuel Cycle
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If Nuclear Energy Provides Energy to Operate Fuel Factories, 
Sufficient Biomass Liquid Fuels To Replace Oil-Based Transport Fuels
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Example: Combined 
Nuclear-Renewable Electricity 

Peak Electricity Production

18

C. W. Forsberg, “Economics of Meeting Peak Electricity Demand Using Nuclear 
Hydrogen and Oxygen?,” Proc. International Topical Meeting on the Safety and 

Technology of Nuclear Hydrogen Production, Control, and Management, Boston, 
Massachusetts, June 24-28, 2007, American Nuclear Society, La Grange Park, Illinois.



Electricity Demand Varies with Time 
Example: Daily Cycle

07-017

15000

17500

20000

22500

25000

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Sy
st

em
 L

oa
d 

(M
W

)

22200

22250

22300

22350

22400

8:00 8:15 8:30 8 :45 9:00

Regulation

15000

17500

20000

22500

25000

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Sy
st

em
 L

oa
d 

(M
W

)

22200

22250

22300

22350

22400

8:00 8:15 8:30 8 :45 9:00

Regulation

19



Large-Scale Renewable 
Electric Production may 

not be Viable without 
Electricity Storage

•
 

Renewable electric output does 
not match electric demand

•
 

Problems exist on windless 
days, cloudy days, and at night

•
 

Low-cost backup power options 
are required
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Fossil Fuels are Used Today to Match 
Electricity Demand with Production

•
 

Fossil fuels are inexpensive to store
 

(coal piles, oil 
tanks, etc.)

•
 

Carbon dioxide sequestration is likely to be very 
expensive for peak-load fossil-fueled plants

•
 

If fossil fuel consumption is limited by greenhouse or 
cost constraints, what are the alternatives for peak 
power production?

•
 

Systems to convert 
fossil fuels to 
electricity have 
relatively low capital 
costs

21



Hydrogen Intermediate and Peak 
Electric System (HIPES)
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Norsk Atmospheric Electrolyser

•
 

Near term
−

 
Electrolysis

−
 

Electricity supply options
•

 

Base load
•

 

Night time and surplus 
renewables

•
 

Longer term 
−

 
High-temperature 
electrolysis

−
 

Hybrid
−

 
Thermochemical
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Nuclear Hydrogen Production Options

Key Characteristics
(H2

 

, O2

 

, Heat, Centralized Delivery) 
are Independent of the 

Nuclear Hydrogen Technology



Bulk Hydrogen Storage is a Low-Cost 
Commercial Technology
•

 
Chevron Phillips H2

 

Clemens Terminal
•

 
160 x

 
1000 ft cylinder salt cavern

•
 

Same technology used for natural gas, 
where one-third of a year’s supply is in 
storage in the fall 

24

Use Same 
Technology for 
Oxygen Storage



Oxy-Hydrogen Turbine for Electricity 
Low-Capital-Cost Efficient Conversion of H2

 

and O2

 

to 
Electricity for a Limited Number of Hours per Year

06-016
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High-temperature 
steam cycle
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→ Steam
•

 
Low cost
−
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−

 

High efficiency 
(70%)

•
 

Unique feature: 
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high-temperature 
steam
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Oxy-Fuel Combustors Are Being 
Developed for Advanced Fossil Plants

06-040

•
 

Hydrogen-oxygen 
combustor similar 
to natural gas–

 oxygen combustor
•

 
CES test unit
−

 
20 MW(t)

−
 

Pressures from 
2.07 to 10.34 MPa

−
 

Combustion 
chamber 
temperature:  
1760ºC

Courtesy of Clean Energy Systems (CES)
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HIPES may Enable Large-Scale 
Nuclear-Renewable Electricity

07-017

•
 

HIPES strategy
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electricity 

•
 

Match production with 
demand
−

 

Renewables have highly 
variable power output

−

 

Can adjust to rapidly 
varying renewables 
output (full utilization)
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07-062

Combined Fuel Cycles have 
Implications for Nuclear Research

28

Goals Determine 
Requirements That 

Determine Research 
Needs



New Requirements for Sustainable 
Nuclear Combined Cycles 

Nuclear Fossil Renwables Fuel Cycles

•
 

Need for smaller reactors (600-MW(t))
−

 
Underground refining heat demand per acre 
limits reactor size

−
 

Cost of biomass transport limits transport 
distances and thus the size of reactor

−
 

Peak-power unit size limited
•

 
Economics of small reactors require 
changes in nuclear technologies
−

 
Site security costs must be controlled

−
 

Safety systems must be simplified

29
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Nuclear Systems Protects 
Fuel and Public

Fuel Protects Nuclear System 
and Public
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“Indestructible” or “Abuse-Resistant” Fuel 
May Be Needed for Nuclear-Fossil- 

Renewable Fuel Cycles
•

 
Desired characteristics
−

 

High-temperature capabilities for accidents
−

 

No significant radionuclide dispersion under extreme 
conditions
•

 

Fire
•

 

Assault resistant (shock waves, etc.)
•

 

Crushing
−

 

Proliferation resistant (Low enrichment, high-burnup, 
difficult to process)

•
 

Goals imply fuels with large inert component 
fractions to meet multiple requirements
−

 

Coated particle
−

 

Cermets
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New Requirements for Sustainable 
Nuclear Combined Cycles 
Nuclear Fossil Biomass Renewable Fuel Cycles

•
 

Need for high-temperature reactors
−

 
Underground refining

−
 

Biomass processing
−

 
Hydrogen production

•
 

Requirements
−

 
Most applications meet with ~700°C reactor

−
 

Some applications may require higher 
temperatures
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Combined Cycles Require 
Long-Distance High- 

Temperature Heat Transport
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•

 

Multiple nuclear high-temperature 
heat applications
−

 

Underground refining
−

 

Hydrogen production
−

 

Biomass processing
•

 

No commercial heat transfer fluids 
above 600°C for kilometer-long 
heat transfer

•

 

Multiple candidates in the 
laboratory
−

 

Fluoride salts
−

 

Chloride salts
−

 

Etc.



Non-Nuclear Research Challenges for 
Specific Nuclear-Fossil-Renewable 

Combined Cycles
•

 
Nuclear-Biomass to Liquid Fuels
−

 
Hydro cracking of lignin biomass to gasoline

−
 

Direct hydrogenation of cellulosic feedstock to 
hydrocarbons gasoline and diesel

•
 

Underground Refining
−

 
High-temperature heat-transfer loops

•
 

Nuclear-Renewable Peak Electricity
−

 
Underground oxygen storage

−
 

Hydrogen production
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Conclusions
•

 
Sustainability goals
−

 

No oil consumption
−

 

No climate change
•

 
Sustainability will require integration of fossil, 
biomass, and nuclear fuel cycles

•
 

Combined fossil, renewable, nuclear fuel cycles 
create requirements for nuclear reactors

•
 

Sustainability may require reactors with “abuse-
 resistant”

 
fuels

•
 

Non-nuclear supporting technologies must also be 
developed
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Questions
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Backup Slides 

Backup Slides 

Backup Slides
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—Abstract—
Combining Nuclear, Renewable, and Fossil Fuel Cycles for Sustainability: 

Implications for Research
Charles W. Forsberg; Oak Ridge National Laboratory; Tel:  (865) 574-6783;  E-mail:  forsbergcw@ornl.gov

The energy and chemical industries face two great sustainability challenges:  the need to avoid climate change and the need to replace 
crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically 
combining the fossil, biomass, and nuclear fuel cycles.

Fossil fuel cycles.  Fossil fuel cycles must be changed to reduce greenhouse impacts and will require options beyond carbon-dioxide 
sequestration.  In situ thermal cracking of heavy oils, oil shale, and coal may enable the production of high-quality transport fuels 
while sequestering the byproduct carbon without moving it from the original underground deposits.  This would significantly reduce 
greenhouse gas releases per vehicle mile by eliminating most of the greenhouse gas releases from producing and converting fossil 
fuels into transport fuels. Underground refining requires high-temperature heat that could be provided by high-temperature nuclear 
reactors. 

Biomass fuel cycles.  The use of biomass for production of liquid fuels and chemicals avoids the release of greenhouse gases.  
However, U.S. biomass resources are insufficient to (1) meet liquid fuel demands and (2) provide the energy required to process 
biomass into liquid fuels and chemicals.  For biomass to ultimately meet our needs for liquid fuels and chemicals, outside sources of 
heat and hydrogen are required for the production facilities with biomass limited to use as a feedstock.

Renewable electric fuel cycles. The central challenge of renewable electricity is the need to provide electricity when the sun does not 
shine and the wind does not blow. One strategy is the production of oxygen and hydrogen using nuclear energy, storing these gases 
underground, and using these gases to produce peak electricity in a special steam cycle where the oxygen and hydrogen are combined 
to directly produce high-pressure steam. The low-cost gas storage combined with a low-cost method to convert it to electricity may 
provide the backup for larger scale use of renewable electricity

Nuclear fuel cycles. For many of these applications, smaller reactors are required. If such reactors are to be economic, a different 
design approach is required. The size of the reactor security and operating staff must be reduced as must the capital costs. One 
strategy is the development of “indestructible” or “abuse resistant” fuel. In traditional nuclear reactors, various nuclear systems 
protect the fuel against damage and protect the public. The alternative strategy is to develop fuels to protect the reactor system and 
the public. In effect, the safety and security requirements become part of the fuel rather than primarily systems in the reactor. 

39
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Cellulose to Ethanol and Diesel 
One Midterm Option with High Economic Potential
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HIPES Economics Is Based on 
Variable Electricity Prices 

Price vs Hours/Year in Each Price Range
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HIPES: Grid Electricity and Electrolysis

06-111
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Property Basis Technical Fuel 
Implication

High-
 Temperature

Prevent accident 
releases

Refractory

Chemical 
Resistant

Prevent accident 
releases

Multilayer resistance to 
oxidation and reduction

Stress 
resistance

Avoid structural failure Encapsulated fuel; 
matrix for stress

Shock 
resistant

Accident and assault Encapsulated fuel with 
inert matrix to withstand 
shock damage to fuel

Potential Requirements for 
Combined-Cycle Small-Reactor Fuel
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Comparison of Traditional Nuclear 
Fuels and “Abuse-Resistant” Fuels

Property Traditional Fuel
(Magnox, LWR)

Abuse-Resistant 
Fuel (Coated 
Particle, etc.)

Fuel Fraction 65–95% <10%

Reactor Safety Reactor systems 
protect fuel

Fuel is the safety 
system

Reprocessing Simple Fuel designed to be 
indestructible 

Security and 
Nonproliferation

Not a design 
consideration

Intrinsic resistance to 
abuse

Abuse-resistant fuel properties make such fuel: 
(1) expensive to recycle and (2) an excellent waste form
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