Advanced Materials

 | 

Advanced Materials

SHARE

ORNL has the nation’s most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure, dynamics and functionality, and we use computation to understand and predict how they will behave in various applications.

From its beginnings in World War II’s Manhattan Project, ORNL has had a distinctive materials science program. Today, materials science research benefits from ORNL’s integration of basic and applied research programs and strong ties among computational science, chemical science, nuclear science and technology, neutron science, engineering, and national security. This broad approach to research is allowing ORNL to develop a variety of new materials for energy applications and transfer these new materials to industry. For example, an understanding of how defects form at the atomic level allows creation of improved materials that approach their theoretical strength, such as radiation-resistant steels for next-generation nuclear reactors and lightweight materials for energy-efficient transportation. In electrical energy storage, we are studying how chemical processes occur at the interface of electrodes and electrolytes and using supercomputers to predict how battery systems will perform. We develop “soft” materials, including polymers and carbon-based materials, used as membranes for batteries, fuel cells, and carbon capture, solar cells, and as precursors for the carbon fiber used in lighter cars and planes. We’ve also discovered ways to improve materials processing, using photon, microwave and magnetic field-assisted processing to increase the performance of new materials while reducing processing costs.   These advances have resulted in a broad portfolio of ORNL materials and technologies in the nuclear, automotive, and structural materials industry.

ORNL researchers are improving analytical tools used to characterize the structure and function of advanced materials, including electron microscopy, scanning probes, chemical imaging, and a variety of neutron scattering capabilities. Many of these capabilities are available through DOE user programs at ORNL, including the two neutron user facilities (the Spallation Neutron Source and the High Flux Isotope Reactor), the Center for Nanophase Materials Sciences, and our microscopy user facility (the Shared Research Equipment User Facility—which will be incorporated in the CNMS later this year). Complementing our experimental research is one of the nation’s largest collections of materials theorists who take full advantage of ORNL’s leadership computational facility to understand and design new materials, as well as processes that occur at materials interfaces. Together, these research capabilities in materials synthesis, characterization, and theory contribute to our leadership in basic and applied materials science that ultimately will lead to new technologies for meeting tomorrow’s energy needs. 

For more information, contact:

Latest News

1-3 of 6 Results
12  

ORNL study reveals new characteristics of complex oxide surfaces
— OAK RIDGE, Tenn., July 24, 2014—A novel combination of microscopy and data processing has given researchers at the Department of Energy’s Oak Ridge National Laboratory an unprecedented look at the surface of a material known for its unusual physical and electrochemical properties.

Oak Ridge National Laboratory Launches Imaging Institute
— OAK RIDGE, Tenn., June 23, 2014—The Department of Energy’s Oak Ridge National Laboratory has launched the Institute for Functional Imaging of Materials to accelerate discovery, design and deployment of new materials.

ORNL awarded two Energy Frontier Research Centers
— OAK RIDGE, Tenn., June 20, 2014—Oak Ridge National Laboratory will be home to two Energy Frontier Research Centers (EFRCs) announced this week by U.S. Energy Secretary Ernest Moniz.

 
12  

Recent Research Highlights

1-3 of 74 Results
12345  

Pulsed Laser Deposition of Photoresponsive Two-Dimensional GaSe Nanosheet Networks
— Researchers demonstrated a pulsed laser deposition (PLD) approach to synthesize networks of interconnected metal chalcogenide (GaSe) nanosheets that exhibit high photoresponsivity.

Predictive calculations of cuprate magnetic properties
— Magnetic couplings in a realistic cuprate system have been correctly predicted for the first time with highly accurate Quantum Monte Carlo (QMC) calculations. Effective magnetic models of superconductivity (previously reliant on experiment) can now be derived with confidence from theory, which could lead to better fundamental predictions of superconductor behavior.

Cooperative Growth of Large Single-Crystal Graphene Islands
— Researchers showed that it is possible to grow large, single-crystal graphene islands by controlling the nucleation density, which determines the growth mechanism.

 
12345  

ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.