Advanced Materials

SHARE

Functional Materials for Energy


The concept of functional materials for energy occupies a very prominent position in ORNL’s research and more broadly the scientific research sponsored by DOE’s Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of functionality is seen in advanced membrane materials that save energy by enhancing the efficiency of existing energy-intensive processes or offer entirely new routes for, e.g., separation processes, carbon dioxide capture or environmental remediation. A third type of functionality is seen in energy-responsive materials, which exhibit a chemical, mechanical, structural or electronic response to some form of energy stimulus that can be utilized for, e.g., sensing, actuation or signaling.

ORNL has extensive research programs into functional materials for energy ranging from basic science through to applied programs. Major areas of activity include (i) porous membranes for separation and environmental cleanup; (ii) electrolyte materials for selective ionic transport in batteries; (iii) organic and polymeric materials for electronic and photovoltaic applications; (iv) superconducting materials; (v) ferroelectric materials; (vi) thermoelectric materials and (vii) new low-energy synthetic routes to technologically important materials. A particular area of strength is in the synthesis and processing of new functional forms of carbon: from the amazing variety of nanostructured carbon materials to “foam” carbon insulators to carbon fiber for lightweight structural materials. It also offers capabilities in these research areas to facilitate science of external users from academia or industry through its user facilities in high performance computing, neutron science and nanoscience.

For more information, please contact:

1-5 of 42 Results
12345  

Thin magnetic crystals are path to ferromagnetic graphene
— Chromium triiodide (CrI3) crystals were identified as a promising platform for studying how magnetism can enhance electronic behaviors in materials that are only a few atoms thick. Development of such ultra-thin magnetic materials may be crucial for continued advancement in miniaturization and performance enhancement of electronic devices.

Synergy of Ionization with Defects Creates Amorphous Track
— A colossal synergy, orders of magnitude larger than anything previously reported, has been discovered to occur between electronic energy loss by ions and pre-existing atomic defects created by elastic energy loss in single-crystal strontium titanate (SrTiO3). This synergy results in the formation of nanometer-sized amorphous tracks, but only in the region with pre-existing defects.

Single Supported Atoms Participate in Catalytic Processes
— Researchers recently predicted and demonstrated that single supported Pt atoms are highly active for NO oxidation. This work will impact determining the optimum loading of noble metals on emissions-treatment catalysts and design of low-temperature catalysts.

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge
— Silicon anodes for lithium-ion batteries are capable of quickly delivering high power but charge at a much lower rate. High-power and high-rate performance of batteries is determined by the intrinsic electrochemical reaction rates. The forward and backward reaction rates for reversible electrochemical reactions are not necessarily identical.

Stable Separator Identified for High-Energy Batteries
— State-of-the-art scanning transmission electron microscopy (STEM) unveiled the structural stability of lithium lanthanum zirconium oxide (LLZO) garnet in aqueous media.

 
12345  
ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.