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ABSTRACT 
 
Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind 
Moore’s law.  Next -generation techniques like maskless lithography or ML2 have the advantage that the long, tedious 
and expensive process of fabricating a unique mask for the manufactured chip is not necessary.  However, there are 
some rather daunting problems with establishing ML2 as a viable commercial technology.  The data rate necessary for 
ML2 to be competitive in manufacturing is not feasible with technology in the near future.  There is also doubt that the 
competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able 
to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices.   In this work, we 
model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and 
concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 
elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one 
element to exposed pixel relationship is allowable.  Some level of sub-element resolution can be achieved with gray 
scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most 
effective elements will be simple on-off switches that fire a fixed level of energy at the target medium.  Consequently 
gray-scale level devices are likely not an option.  Another problem with highly integrated manufacturing methods is 
device uniformity.  Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al.  
which can defeat many of these problems.  We determine some basic equations governing its application and we focus 
on applying the technique to an array of low-energy electron emitters.  Using the results of Monte Carlo simulations on 
electron beam profiles, we determine an empirical “impulse response” for each emitter and thus determine how each 
emission manifests itself in the final printed lithographic pattern.  We apply methods to determine the best printable 
image for a variety of RSA geometries, including different levels of redundancy and achieved printer element spacing.  
We use concepts of total printing error to help quantify the printing quality.  Through simulation, we report the effects 
of dead or missing elements.  We also present some error analysis to account for non-ideal array positioning.  
Ultimately, we believe that printing quality should be the grounds for determining the necessary data rates to support 
competitive manufacturing with ML2 devices. 
 

1. INTRODUCTION 

 
Gordon Moore’s law (i.e., the number of transistors on a microchip will double every 18 months) has become a driver 
for the semiconductor industry.  Of the candidates to replace (or supplement) optical lithography, electron-beam direct-
write (EBDW) technology provides the highest potential for maskless lithography (ML2).  The International 
Technology Roadmap for Semiconductors (ITRS) states “Breakthroughs in direct-write technologies that achieve high 
throughput would be a significant paradigm shift [that] would eliminate the need for masks, offering inherent cost and 
cycle-time reductions.”[i]  However, there are some rather daunting problems with establishing ML2 as a viable 
commercial technology.  The data rate necessary for ML2 to be competitive in manufacturing is estimated to be in the 
1-10 terabit / s range [ii] that is not feasible with technology in the near future.  There is also doubt that the competing 
technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to 
accurately produce the desired patterns necessary to produce multi-layer semiconductor devices [iii].  There have been 
several studies conducted on the lossless compression of integrated circuit patterns and the circuitry to implement them 
[ii,iv,v,vi].  Our work here starts from a more fundamental approach, of first investigating the printability of these 
patterns, with a specific eye toward a redundant scanning array (RSA) geometry using low-energy electron beams, with 
the ultimate goal (not addressed here) of signal compressibility and print quality. 
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Figure 1  Illustration of 
redundant scanning array 
(RSA). a) shows the effect of 
redundancy, with 5 
elements crossing the y = ya 
line at the same place.  b) 
shows that tilting the array 
can create smaller inner-
element distances, and c) 
details this fact 

2. SYSTEM MODELING 
We explored the geometry issues associated with a tilted redundant scanning array or RSA proposed by Berglund  [vii].  
The RSA concept is illustrated in Figure 1.  In Figure 1a, we see an array with uniform spacing in the x- and y- 
directions.  As the array moves downward in the y direction, we see that each site at position y = y a is hit by five array 
elements.  In this case, we say the array has created a redundancy of 5.  In Figure 1b, we tilt the array by 45 degrees.  As 
a result, since we have not increased the number of array elements, we decrease the available redundancy to range from 

5 to 1.  However, we have decreased the effective spacing of the x-positions at y = 
ya.  Figure 1c shows in detail how we use the array tilt to create a new effective sub-
array of elements at smaller inner-element spacing than a non-tilted geometry.   
 
Our analysis revealed that there are only discrete angles that can achieve co-
incidence.  These angles obey the equation 
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where M and N are integers and k is the ratio of the element spacing in the x and y 
direction.  Essentially, a ratio of M=1 and N = 5 means co-incident elements are 1 
column apart and 5 rows back.  For M=1, N is approximately equal to 

r

element

d
d

N =      Equation 2 

where delement is the spacing between array elements (assumed to be identical in the 
x and y direction, or k=1) and d r is the distance between steps or array “firings”.  
Assuming M=1, as N >> M we find that the distance between co-incident elements 
becomes approximately  
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Finally, as the array moves the number of steps required between co-incident 
elements is  
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Due to the 2-dimensional nature of the problem the number of steps scales as the square of the ratio between the actual 
spacing and the desired spacing.  Thus, although the tilted array is an ingenious idea with some advantages (particularly 
that motion is only required in one direction), it cannot get around the fact that many steps are required to write a tight 
pattern with relatively sparsely spaced emitters. 
 
The redundant scanning is also an ingenious idea and very necessary to overcome the shortcomings of binary emitters, 
but the number of steps required scales linearly with the number of redundant elements desired.   
 
As a result, a step-and-settle system will likely be impossible unless the emitters can be constructed extremely close 
together.  With a redundacy of 15, a ratio of delement/dr of 100 results in 150,000 total steps, or (with a target of 1 wafer 
per minute) 2500 steps per second.  Achieving rates near 100 steps per second may be possible circa 2006, but these 
rates are not likely to increase by orders of magnitude in the foreseeable future.  Emission technologies that depend on 
step-and-settle will probably not be feasible. 



 

2.1. Linear System With Threshold 
To determine the location of the firing sites, we first construct an array given a particular dx and dy.  The choice of these 
values will depend on the manufacturing methods for the maskless writer array.   The firing site density is related to the 
impulse response; since the beam width is assumed to be less than 25 nm total, we use effective array spacing that are 
no greater than approximately ½ this distance (about 10 nm).  We then estimated the size of the array required for a 
given redundancy.  We actually employed several different values and analyzed their effect on data rates and error rates; 
however, we did not consider the bad element compensation capability of the redundancy.  We then created an array 
with the spatial coordinates of the rectangular emitter array.  Our next  step was to rotate the array element locations 
from old coordinate system (x’,y’) to new coordinates (x,y).  When the tilting was performed, several elements 
contributed to x locations with insufficient redundancy; and several contributed with excessive redundancy.  We filtered 
out these elements, and then proceeded through a timed sequence of stepping the array by d r in the y direction only.  We 
proceeded for a number of discrete time steps.  We thus generated a table of values that show the position of each writer 
as a function of time.  This table had both a true, real position and a truncated integer position as well.  We required the 
integer positioning because our analysis software was based on image processing, and thus pixels could be off-on only 
and were discrete positions. 
 
The overall system is modeled as shown in Figure 2.  Discrete “firing” points are found based on the array geometry 
and step or firing size.  Each weight ranges from 0 (no firings) to R, where R is the chosen redundancy.  Once these are 
found, the system impulse response is applied through a convolutional process.  This assumes that the system is linear; 
exposing a site with three signals of strength “X” is equivalent to exposing the site with a single signal of strength 3X.  
Finally, we model the development process with a simple threshold.  This does not account for things like line edge 
roughness or variability in the development process, but it does help us model the effects of the impulse response 
coupled with the selected printer weights. 
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Figure 2  Maskless lithography system concept 

 

2.2. Resist Response 
We seek to use multiple gray levels to allow fine positioning of energy deposition.  Multiple exposures of a site on the 
resist media creates different degrees of modification that can be removed by the development process.  As a result 
more precise positioning of the printed pattern can be achieved. 
 
It is difficult to determine a general rule for resist responses to low energy e-beam deposition.  Therefore, this section 
will present the results of Monte-Carlo simulations performed under the direction of David Joy [viii].  We will then 
show how we used these results to determine an impulse response suitable for linear systems analysis for our printing 
simulations. 
 
The media response simulations used photoresist parameters similar to PMMA under low-energy e-beam conditions.  In 
the simulations a specific beam profile was assumed, with a 25 nm profile.  Figure 3 shows the results of the simulation 



with delivery into 10 nm of a PMMA type material, as well as an idealized response.  The profile is normalized to a 
100% full saturation dose or FSD.  A 100% FSD means the material is exposed to saturation such that further exposure 
results in no change in the chemical composition of the resist media.  Thus, 99% is practically the full dose, and 10% is 
1/10th of FSD.  Note that the actual “spot” produced by these beam exposures is twice the size shown, since the spot is 
symmetric about the beam axis. 
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Figure 3  Resist response to 25 nm, 1 kEV beam into 10 nm PMMA material.  Black lines represent simulation 
results; Red lines represent idealized results used for impulse response. 

As noted, this assumes delivery into a 10 nm of PMMA, which presents two problems.  First, such a thin deposition of 
resist media is difficult to achieve in practice.  Second, with this configuration the depth of the developed and exposed 
region does not reach the full 10 nm until almost 99% full exposure.  Such a system is effectively useless until full 
saturation is achieved, which means it is difficult to attain gray scale levels.  We attempted to investigate alternate resist 
media, including chemically amplified resists, but we were not able to complete simulations of these materials due to 
time and budget constraints.  However, for our modeling, we assumed that we can obtain a resist material that does not 
have this problem. We therefore assumed that we could obtain a resist material with a response more like that of the red 
lines in Figure 3, where we acquire a dosage width similar to our PMMA simulations but with a depth (possibly attained 
through chemical amplification) that reaches the bottom of the resist thickness. 
 
We took these results and extrapolated them using a second order exponential profile.  We modified the profile so that it 
did not become unbounded at the origin.  We eventually found the equation 
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where G is the single dose gain, R is  the redundancy, and r is the distance from the center of the emitter or  

22 yxr +=
         Equation 7 

The profile is illustrated in Figure 4.  In Figure 5, we show the resulting spot width after threshold development with the 
threshold set to unity for G=1, R=1, which means a single dose is equivalent to 1% of a full saturation dose.  In Figure 
6, we show the resulting spot width after threshold development for G=5 and R=3 for comparison.  Note that in the case 
of 1 dose for R=3, the energy deposition is so low that no development occurs.  However, these low doses allow us to 
gain a greater level of control and shaping over the other levels that can be achieved.   
 



 

Figure 4  Two-dimensional profile of impulse response 

 

Thresholded Profile for R=1, G=1
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Figure 5  Thresholded profile for R=1, G=1 (where 1 dose = 1% of FSD) 

 

Thresholded Values for G=5, R=3
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Figure 6  Thresholded profile for G=5, R=3 
 
 
 



3. DETERMINING FIRING WEIGHTS 
Our next step is to find the optimal printing patterns for a particular pattern.  Essentially, we can locate particular “firing 
sites” on a printing field, which represent positions where the emitter elements will energize the resist medium.  Each 
firing site will be assigned a gray level ranging from 0 to R-1, where R is the redundancy.   These levels are the number 
of times an emitter passing over the site will switch on or off. Pseudoinverse filtering and Weiner filtering are 
operations which are designed for solving this type of problem.  However, this situation is complicated by two factors: 
the quantization of the weights to integer values from 0 to R, and the thresholding operation which is non-linear and 
difficult to model.   
 
Our error was computed by simply taking the 1-norm (absolute difference) between the desired pattern and the resulting 
thresholded pattern, with a penalty of 1 for any pixel where the test result does not match the desired pattern.  This 
calculation does not attempt to increase the penalty on more obvious problems, such as bridging between structures, but 
nor does it soften less painful issues such as slight pixel errors on long lines.   

( )( )∑∑ −=
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If we simply sample the desired pattern, the result is corrupted by aliasing.  Figure 7 shows an example of this 
operation, with the original pattern and the output signal.  This approach is reasonable for a first approximation but 
delivers very poor results.   We used four gray levels (R=3) and an element spacing of 10 pixels for these experiments. 
 

    
   a       b 

Figure 7  Results of omitting the analysis filter G.  (a) input pattern; (b) output print.  The error in this case is 
4320 pixels, or approximately 8% of the total 

Better results are obtained by filtering the pattern prior to sampling.  We show results of both a band-limiting filter and 
also using the impulse response itself in Figure 8.  In both cases we take the desired pattern, apply the filtering process, 
sample it with the firing array, round the values to the closest integer ranging from 0 to R, then use these values to 
simulate the print by convolving with the emitter impulse response and thresholding.  In this mode, prior to thresholding 
we ramped through several different scalings and selected the one that gave the least error.  Both these techniques yield 
better results than the unfiltered case.  

 

           
                     a             b 

Figure 8  Direct method of weight synthesis (a) filtered with impulse response; (b) filtered with anti-aliasing 
filter.  The error is 2831, or about 5.31%, and 2543 pixels, or about 4.76% 



A special case of filtering prior to sampling is to subsample the desired pattern and sum up all the samples in the 
vicinity of a sampling site, then assign the weight based on this value.  This technique yields good results quickly but 
does not necessarily yield the best results nor the most robust, as seen in Figure 9. 
 

            

Figure 9  Direct method of weight synthesis using sum of values around firing sites.  The error is 3573 pixels, or 
12% of the total. 

By writing the process of the convolution between the impulse response and the firing sites as a system of equations, we 
can create a problem that can be solved using a least-squares approach.  The equation of interest is  
 

HFV =          Equation 9 

 
where V,H, and F are matrices: 
 
V is the output (pixels x 1): it is the output energy deposition function.  After thresholding it should closely match our 
desired image.  V can assume any non-negative value.  We set the value of V to 0 for areas where we do not want 
pattern and we set it to T for areas where we do want pattern. 
H is the transformation (pixels x firing sites): this transfer function tells us how a firing site location affects the output 
image pixels.  It is a function of our image size, firing site geometry, and response of the resist to the emitter signal.  H 
is nonnegative for the ML2 printing problem. 
F is the firing weights (firing sites x 1): this matrix shows the desired firing site weight for each firing site location.  We 
seek to solve for this value, subject to the constraint that the values of F must be discrete values from 0 to R, where R is 
the redundancy. 
 
Solving this equation with a least-squares approach consisted of computing the pseudo inverse 
 

( ) VHHHF TT 1−
=         Equation 10 

then truncating F to the nearest discrete value in the range {0,R}, and thresholding the result.  We get a solution such as 
that shown in Figure 10.  While our result F is guaranteed to be the least-squares values of firing sites that will most 
closely match V, there are two issues with this approach.  First, we do not know what the value of V should actually be; 
there are an infinite number of possible Vs that could be thresholded and produce the desired output pattern.  Secondly, 
the truncation and rounding of F is a major problem that is not reflected in this solution method.  These issues bear 
further investigation to make this method useful.  
 



 

Figure 10  Results using LSQ algorithm.  The error in this case was 3062, which is about 5.5% error 

Finally, we utilized a technique we have coined “Direct Quantized Search” (DQS) derived from the “Direct Binary 
Search” method [ix]for computer generated holography and image half-toning.  In the DQS method an initial guess is 
performed at the ideal weights, then a particular site is cycled through all available weights and the error measured at 
each step.  The weight with the minimum error is retained and the algorithm proceeds to another site.  When the error 
cannot be reduced further, the algorithm either stops, or investigates sites in pair or four-wise fashion by selecting sites 
that were “free”, in that all values impacted the end result equally.  This method is rather time consuming but it does 
produce better expected error than the other techniques.  We have refined the algorithm as well with some additional 
image processing steps to try and eliminate sites that have little impact on the overall image quality (i.e., sites that are 
obviously in the middle of an all-white or all-black area).  An example of the results of this algorithm is shown in Figure 
11, for a low redundancy of 3. 
 

          

Figure 11  Results using DQS algorithm.  The error in this case was 1634, which is about 3% error. 

4. EXPERIMENTAL RESULTS 
We ran a variety of small test patterns to test the performance of the DQS algorithm in finding reduced-error printing 
patterns.  Next, we performed a Monte-Carlo style analysis on the DQS optimal printing patterns to determine their 
susceptibility to errors in array positioning.  Finally, we studied through simulations the effect of dead or missing 
elements. 
 
Our experimental array configuration used an array with element spacings of 100 “units”.  We computed array tilts for 
an effective spacing of 10 and 5, and used sample patterns that covered a 256 by 256 area.  The sample patterns have a 
minimum “feature size” of 20 pixels.  A convenient way to normalize these values is by taking the minimum feature 
size and expressing it as λf, indicating that this is the design rule we wish to print.   
 
We conducted experiments with arrays using redundancies of 3, 7, 15, and 31.  In all cases, we used a factor of 5 for the 
constant single dose gain.  Intuitively, we were certain that higher redundancy and smaller effective spacings would 
produce the least printing error, but would also require the highest data rates.  This turned out to be the case but the 
trade-offs our analysis illustrates are very valuable. 
 
We ran a variety of test patterns shown in Figure 12.  We show the results of tests with these patterns in Figure 13 
through Figure 18.   
 



       
                            a   b   c 

Figure 12  Patterns used for testing various ML2 array geometries.  a) Cross; b) Horizontal; c) Vertical.  In all 
cases the bars that comprise the pattern are approximately 20 pixels wide. 

          

Figure 13 Results with cross pattern for spacing of 10.  R=3,7,15,31 

          

Figure 14  Results with cross pattern and spacing of 5.  R=3,7,15,31 

          

Figure 15  Results with horizontal pattern and spacing of 10.  R=3,7,15,31 

          

Figure 16 Results with horizontal pattern and spacing of 5.  R=3,7,15,31 

          

Figure 17  Results with vertical pattern and spacing of 10.  R=3,7,15,31 



          

Figure 18  Results with vertical pattern and spacing of 5.  R=3,7,15,31 

 
The positioning of the array is critical to successful writing of the patterns.  Errors in the positioning will naturally 
occur, however, so we decided to do a Monte Carlo analysis to determine the effect of these errors.  Our simulation 
involved skewing the positions of the writers randomly, computing the resulting pattern, and determining the error.  For 
our analysis, we performed 16 trials for each different element spacing and redundancy.  Each trial consisted of 
randomly perturbing the element position by generating a pair of Gaussian-distributed random values, one each for the x 
shift and y shift.  Both had a variance of 1, which corresponds to one pixel of error.  Fractional pixel shifts were 
computed by interpolating the impulse response function.  Ideally, at time t, the random error in positioning of element 
N should be somewhat correlated with the error on all the other elements – but for our analysis we assumed they were 
all independent.   
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Figure 19  Plot of DQS Error vs Redundancy 
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Figure 20  Plot of Motion Error vs Redundancy 

 

We ran some experiments on the test images for two cases of redundancy and spacing that had similar data rates: 10 
spacing with 15 redundancy and 5 spacing with 3 redundancy.  The experiments were run by dropping a different 
number of random emitters for the entire writing time.  Essentially, even though the writing signals were not modified 



to handle known dead elements, the redundancy of 15 with larger spacing provided useful signal overlap and permitted 
the patterns to degrade more slowly than cases with fewer redundancy and smaller spacing. 
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Figure 21  Plot of errors from defective elements 

 

S=10, R=15       

S=5, R=3        

Figure 22  Cross test images showing effects of random dead elements for 10%, 20%, 30%, and 40% bad 
elements. 

5. CONCLUSIONS 
If the cost of EUV masks and other NGL technologies is excessive for small production runs, some maskless 
technology will prove attractive even if its throughput is slower.  Increasing the allowable processing time to 30 minutes 
results in a data rate reduction by a factor of 30, which would achieve the “compression” required with no real work at 
all.  Ultimately cost will be the deciding factor. 
 
Nevertheless, there are many factors that encourage the development of very high throughput maskless lithography 
technologies.  It is well known that large data rates are required to make maskless lithography competitive with more 
conventional technologies, there are other issues as well.  The use of a RSA allows smaller spacing than permitted by 
the actual emitter spacing, but the tilted array cannot get around the fact that many writing cycles are required to write a 
tight pattern with relatively sparsely spaced emitters.  Due to the 2-dimensional nature of the problem the number of 
steps scales as the square of the ratio between the actual spacing and the desired spacing.  In addition, redundant 
scanning overcomes the shortcomings of binary emitters, but the number of steps required scales linearly with the 



number of redundant elements desired.  There may be other ways to construct the arrays but we have had difficulty 
finding a better concept; trying to directly place elements behind one another, for example, doesn’t really solve the 
problem although it can cause coincident elements (with similar data signals) to occur more closely in time and space, 
possibly improving signal compression rates.  Finally, due to the large number of steps, a step-and-settle system will 
likely be impossible unless the emitters can be constructed extremely close together.  A ratio of desired emitter spacing 
to actual emitter spacing of 100 results in 2500 steps per second to achieve the 1 wafer per minute rate.  Based on 
commercial development in wafer defect detection instruments that we are familiar with, achieving rates near 100 steps 
per second is highly difficult and may be possible around 2006, but these rates are not likely to increase by orders of 
magnitude in the foreseeable future.  Finally, creating the optimal weighting factors will be time-consuming.  This may 
be a fertile field for some clever solutions.  We note that the problem should be somewhat easy to scale, making it well 
suited for networked computer solutions. 
 
On the positive side, we believe we have shown that based on error measurements, we believe (if our simple 
thresholding is a reasonable practice) that a lower redundancy / gray level number can achieve effective results.  Also, 
missing elements can be a problem, as can motion problems, but these both are not show-stoppers if the element spacing 
overlaps the impulse response of the system enough.  We believe explorations in maskless lithography data handling 
should directly address the desired print quality and possibly look for solutions that can both achieve effective data rates 
and print quality within some tolerances. 
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