
header for SPIE use

Prepared by OAK RIDGE NATIONAL LABORATORY, Oak Ridge, Tennessee, 37831-6285, managed by LOCKHEED MARTIN
ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464.

Content Based Image Retrieval for Semiconductor Manufacturing
Thomas P. Karnowskia, Kenneth W. Tobina, Regina K. Ferrella, and Fred Lakhanib

aImage Science and Machine Vision Group, Oak Ridge National Laboratory, Oak Ridge TN 37831
bSEMATECH, Austin TX 78741-6499

ABSTRACT
In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line,
train automatic defect classification systems, and examine historical data for trends. Image management in semiconductor
yield management systems is a growing cause of concern since many facilities collect 3000 to 5000 images each month, with
future estimates of 12,000 to 20,000.

Engineers at Oak Ridge National Laboratory (ORNL) have developed a semiconductor-specific content-based image retrieval
architecture, also known as Automated Image Retrieval (AIR). We review the AIR system approach including the application
environment as well as details on image interpretation for content-based image retrieval. We discuss the software
architecture that has been designed for flexibility and applicability to a variety of implementation schemes in the fabrication
environment. We next describe details of the system implementation including image processing and preparation, database
indexing, and image retrieval. The image processing and preparation discussion includes a description of an image
processing algorithm which enables a more accurate description of the semiconductor substrate (non-defect area). We also
describe the features used that identify the key areas of the defect imagery. The feature indexing mechanisms are described
next, including their implementation in a commercial database. Next, the retrieval process is described, including query
image processing. Feedback mechanisms, which direct the retrieval mechanism to favor specified retrieval results, are also
discussed. Finally, experimental results are shown with a database of over 10,000 images obtained from various
semiconductor manufacturing facilities. These results include subjective measures of system performance and timing details
for our implementation.

Keywords: Content-Based Image Retrieval, semiconductor, yield enhancement, defect detection, automated image retrieval

1. INTRODUCTION
In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line,
train automatic defect classification systems, and examine historical data for trends. Anticipated advancements in
semiconductor manufacturing will require faster manufacturing-process analysis to maintain economic viability despite the
growth in circuit complexity and the amount of data acquired[1]. Indeed, image management in semiconductor yield
management systems is a growing cause of concern since many facilities collect 3000 to 5000 images each week, with future
estimates of 12,000 to 20,000 per week commonly given. The vast majority of this data comes from instruments such as
inspection tools (both in-line and off-line) including optical microscopes, laser-scattering systems, and SEMs.

Although much of the drudgery in yield enhancement work is being replaced by automated techniques, there are still many
situations where historical image data must be searched manually to isolate errant processes and equipment. Unfortunately,
to date there are no content-based methods of sorting the imagery collected by in-line and off-line inspection tools. Oak
Ridge National Laboratory has been working with SEMATECH to develop methods for managing the large volumes of
image data. One method, the semiconductor-specific content-based image retrieval system, also known as Automated Image
Retrieval (AIR), leverages advances in the field of content-based image retrieval (CBIR). CBIR is a technology that is being
developed to address the needs of a wide variety of fields, including remote sensing, art galleries, architectural and
engineering design, geographic information systems, weather forecasting, medical diagnostics, and law enforcement [2].
CBIR techniques are used to index and retrieve images from databases based on their pictorial content [3], typically defined
by a set of features extracted from an image that describe the color [4,5], texture [6,7] and/or shape [8, 9,10] of the entire
image or of specific objects in the image. This feature description is used to index a database through various means such as
distance-based techniques, rule-based decision making, and fuzzy inferencing [11, 12,13]. The semiconductor yield
management environment represents an application area where CBIR technologies have not been extensively studied. Initial
results of a manufacturing-specific CBIR system developed by the authors are reported in [14]. Discussions of how AIR fits
into an overall yield enhancement environment are covered in [15,16].

INDEXING QUERYING

feature
vector table

indexing
tree

extract
image

features
read

image

?
more

images

yes

no

build feature
vector table

generate
indexing

tree

query image

image
database

user

query results

relevance
feedback

Figure 1-The AIR technical overview.

This paper describes extensions to the previously reported work for the semiconductor-specific environment. We first
describe the overall technical approach and software system architecture, including improvements to the software architecture
for our implementation. Next, we discuss details of our approach including image processing, descriptive features, indexing
techniques and retrieval methods. Finally, performance and timing results are shown for an extensive database featuring over
10,000 images of semiconductor defects collected from various SEMATECH member companies from actual fabrication
facility databases.

2. SYSTEM ARCHITECTURE
1. Technical Approach
The AIR system technical approach is shown in Figure 1 below. Two main procedures are carried out with AIR: indexing
and querying. Indexing refers to extracting features (numeric descriptors) from the imagery in an attempt to numerically
capture the pictorial content of the imagery. These numeric descriptors are used to build tree structures that describe the

image population and allow for easy
access of the individual images. As
shown in Figure 1, the AIR indexing
procedure begins by reading an image
and extracting the image features through
common and customized algorithms.
These features are used to build several
tables that focus on particular aspects of
the imagery, including color, shape, and
texture of the defect and background.
Since the focus of AIR is semiconductor
images generated by inspection
instruments, we have assumed a mask
segmenting the defect from its
background is available from these tools.
Once the tables contain a certain number
of entries (called a "buffer factor"),
indexing trees are generated. The trees
serve as the means for easy retrieval of
subsequent queries as well as a
mechanism or "seed" for storage and
indexing of additional images.

An image query occurs in a similar
manner. A query image (with
accompanying mask) is read and features
are extracted. The features are scaled

based on the vector tables and the buffer factor. The indexing structures are searched to find the closest examples, creating
small subsets of images. These small subsets are combined and a "brute-force" vector distance search is performed to find the
closest examples to the query image. Typically an operator will request a certain number of results, N. The combination of
subsets usually (though not always) yields more than N returns, which are then searched in the more exhaustive manner.
Thus, the indexing trees allow a rough approximation to an exhaustive search by finding several close examples on a coarse
scale. The more resolute vector distance search is then performed on a subset of the original database data, allowing a much
faster retrieval. Obviously, some accuracy in the completeness of the results is sacrificed; the degree of this loss depends on
the effectiveness of the organization of the indexing tree structures.

When the initial results are returned, the user can select those images that most closely match his or her desired results.
These images are returned to the system to perform a feedback query. The returned images are analyzed with a feature
ranking algorithm to determine a feature weighting and the distance measurements are recomputed to reflect both the feature
ranking and the new examples, which serve as supplemental query signals. The result is an improved retrieval set showing
more similarity to the query image.

2. Software Architecture
The AIR software is implemented as a set of C++ objects. The overall system architecture is shown in Figure 2a through 2c.
Figure 2a shows the image storage / indexing operation, Figure 2b shows the retrieval operation, and finally Figure 2c shows
the overall system architecture as encapsulated by the CMSCBIREngine object. We describe this structure further below.

CExemplarEngine

CFeatureVector

CAIRDatabase

“Local” AIR Database
(custom, file-based format)

CAIRImage

Image Files
 (jpeg, tif, bmp, etc)

Commercial Database
(i.e., Oracle, DB2, etc)

CMSCBIREngine

CMSCBIREngine::AssignDatabase(…)
CMSCBIREngine::AddImageToDatabase(…)
CMSCBIREngine::GetSimilarImages(…)

CAIRDatabase

CExemplarEngine

CRetrievalEngine

a

CExemplarEngine

CFeatureVector

CAIRImage

Image Files
 (jpeg, tif, bmp, etc)

CAIRDatabase

List of
CFeatureVector

objects

CRetrievalEngine

Distance measurements
Sorting

CRetrievalResults

b

c

Figure 2-AIR software architecture. a - Storage and indexing; b - Retrieval; c -
CMSCBIREngine.

a cb

d

Difference between invariant moments of background
and masked images

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

I0 I1 I2 I3 I4 I5 I6

Invariant Moment

S
ca

le
d

V
al

ue

Background-MaskA

Background-MaskB

Figure 3-Effect of masks on background features. a -
Background without defect; b - Mask A; c - Mask B; d-Plot of

differences in invariant moments

a b

c

Difference between invariant moments of
background, masked, and filled images

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

I0 I1 I2 I3 I4 I5 I6

Invariant Moment

S
ca

le
d

V
al

ue Background-MaskA

Background-MaskB

Background-FilledA

Background-FilledB

Figure 4-Resultant images after background filling and feature
values. a - Filled mask A; b-Filled mask B; c-Plot of differences

a b

dc

Figure 5-Examples of multiple blob
masks. a and b - Disconnected, related
blobs; c and d - Disconnected, unrelated
blobs.

the defect is located. Although the overall trend
is obviously very similar, some differences do
occur in the image due to the "hole" left by the
defect. In order to mitigate this problem, a
background filling algorithm was employed.
The algorithm uses spatial activity measures to
determine if the overall image pattern is
horizontal or vertical, then copies sets of pixels
from the opposite direction in an effort to repeat
spatial patterns and compute more compatible
features. The results of applying this algorithm
are shown in Figure 4. The features match the
"true" background image much more closely
after applying the background filling algorithm.
Note also that the filled images, while not
exactly matching the original background image,
are more accurate representations of the
background although artifacts of the defect are
visible. For many images in semiconductor
manufacturing the filling technique works very
well, but images with mixtures of patterned and
unpatterned backgrounds or features that are at
right-angles to one another can cause confusion
in the defect filling algorithm. Nevertheless, the
resultant features are still likely closer to the
"original", thus minimizing the negative impact
of the filling procedure.

A final problem that arose was the issue of multiple connected regions or blobs in image masks. Automatic segmentation
algorithms often have considerable difficulty in combining defect regions that are obviously the same defect but are not
contiguous in an image due to physical barriers, boundaries, or the defect intensity falling below some threshold for an area
of the image. In addition, often two unrelated defects can lie within the same region of interest on an image. Examples of
these types of problems are shown in Figure 5. For our implementation, we elected to assume each blob represented a
separate defect. An image labeling algorithm was employed to count and separate blobs on image defect masks. It should
be noted that our architecture can easily accommodate an approach where spatially separated blobs are assumed to be the
same defect.

2. Database Indexing
When creating the image database, feature measurements and comparison
require some knowledge of the statistics of the imagery used.
Unfortunately, the very nature of large databases prohibits knowing these
statistics a priori; as a result, either estimates of the likely image statistics
must be used or a sample of the images must be taken. In AIR, we identify
a parameter called a "buffer factor", so named because images are stored in
a buffer before generating indexing trees. This approach allows AIR to
assemble a collection of images from which statistics can be taken before
generating the indexing tree. In order to accommodate this parameter, the
database implementation requires additional tables to buffer the data. In
addition, it is necessary for the initial imagery within the range of the
buffer to represent a reasonable sample of the types of data stored in the
database. In the manufacturing environment, this would entail that the
database be loaded initially with perhaps the most important historical data.

In addition to images with defects, the system architecture must also
accommodate images with no defects. These occur often for various
reasons, such as critical dimension metrology (i.e., linewidth

Texture
Average Intensity
Contrast
Sobel Average Intensity
Sobel Energy

Color
Hue
Chrominance

Shape
Area
Perimeter
Elongation
Compactness
Invariant Moments 0 - 6

Figure 6-Examples of Features Used in AIR

measurements), and overlay metrology. While the current implementation of AIR does not attempt to perform automatic
defect segmentation or detection, performing an abbreviated database search when no mask images are available makes
allowances for non-defect imagery. The database indexing structures that identify the defect features are, in essence, ignored,
as are subsequent fine resolution queries on the coarse database results. Thus it is possible for some retrieved images to
contain defects and some to contain no defects - no preference is made for either domain when queries are performed without
image masks. The resulting flexibility provides a valuable tool for the semiconductor yield enhancement engineer.

Finally, some of the features generated for the database indexing
and retrieval are summarized in Figure 6. Most of these features are
self-explanatory; references can be found in [17,18]. Again, the
architecture of AIR is flexible and the current feature list can be
easily amended to include or exclude any number of features, so
long as they can be fit into the general descriptors of Texture, Shape
and Color.

Image Retrieval
The image retrieval system implementation follows the indexing
rather closely since the process of storing images requires a
searching mechanism to find the proper location in the indexing tree

for input feature vectors. The main difference is the "brute-force" distance measurements and sorting performed on initial
image sub-sets after the coarse database search. The implementation of AIR uses Euclidean distance to measure the
difference between the query image and the returned list of close vectors.

4. EXPERIMENTAL RESULTS
A user interface was developed for AIR to demonstrate its capabilities. The interface allows three main functions: the
selection of a random set of images from the database, loading query images and masks, and performing queries with
optional feedback. Although it is difficult to quantify the diversity of the database population, using the random query
capability can be illustrative. Figure 7 shows two examples of randomly choosing 16 images from the database. The
database itself is made up of images taken from over 20,000 collected from various SEMATECH member companies. Due

Figure 7-Examples of random images from the experimental database.

to time constraints, only about half these images were examined for defects, although efforts were made to ensure that a
sampling of all member company images were represented in the database. As mentioned previously, defect masks were not
available so members of the development team reviewed approximately 10,800 images and generated masks manually when
required. As mentioned previously, some images did not have defects and some images contained multiple defects. Overall,
the database was populated with 12,774 defects and 2,052 images without defects for a total of 14,826 database entries.

1. Feature Distributions
The data for the experimental results was prepared by first extracting the feature vectors from the entire image set. The
maximum and minimum for each feature was determined. Then the feature vectors were randomly selected and added to the
database to ensure a mixture of member company contents and variability of indexing. One stipulation was placed on the
selection; the vectors with the maximum and minimum feature values were added first. Thus, the buffer factor (which was
set to 100) was assured to be large enough to capture the maximum and minimum vectors. The current implementation of
AIR uses the buffered vectors solely to determine the maximum and minimum values for feature normalization, but it is
illustrative to examine how representative these vectors are for the entire set. Some histograms of four of the features are
shown in Figure 8. These plots show reasonable correlation between the small set and the overall image distribution.

Histograms for Feature 0

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bin

N
or

m
al

iz
ed

 C
ou

nt

Full Set

First 100

Histograms for Feature 1

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bin

N
or

m
al

iz
ed

 C
ou

nt

Full Set

First 100

Histograms for Feature 2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bin

N
or

m
al

iz
ed

 C
ou

nt
Full Set

First 100

Histograms for Feature 10

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bin

N
or

m
al

iz
ed

 C
ou

nt

Full Set

First 100

Figure 8-Examples of Distributions of Features for Buffered Set and Overall Database

Ratings of Retrievals
Overall Performance 85%

0
10
20
30
40
50
60
70
80

Good Moderate Bad

Rating

%

Figure 12-Overall ratings of retrievals for AIR database

3. Performance
With such a large database, it is difficult to quantify performance. Since AIR is designed to be used with an operator in-the-
loop, however, a subjective measure of "good retrieval" vs. "bad retrieval" is a valid technique for verifying performance.
For this estimate, we randomly chose 1483 images, which amounts to 10.0% of database population. Each image was

queried against the database for 32 closest matching
images. These results were stored and later viewed in
order from the closest match to least closest match. A
grade of Good, Moderate, or Bad was assigned to each
resulting group. Good grades meant several (4 or
more) results looked very close, with no more than 3
images looking very different. Moderate meant a few
(1 to 3) images looked similar, with no regard to the
remaining images. Finally, Bad meant virtually no
returned images looked similar; the results resembled a
random query of the database. Each Good grade was
given a numerical score of 1.0; Moderate was assigned
0.5; and Bad was assigned 0.0. For the 1483 images
viewed, 74.3% were graded as Good; 21.7% Moderate;
and only 4.0% were assigned Bad. These results are
plotted in Figure 12. Finally, some examples of query
results are shown in Figure 13.

Figure 13-Query examples

Figure 13-Query examples (continued).

5. CONCLUSION
In semiconductor yield management, the dependence on image-based metrology and inspection has resulted in the generation
and storage of large volumes of image data. The ORNL AIR system is the first industrial application of image retrieval
technology that operates on visual similarity in the semiconductor manufacturing environment. We discussed the AIR
technical approach and software architecture, then we addressed some of the implications of real-world semiconductor data
such as multiple defects, images without defects, and required image processing to address these issues. Finally, we showed
some of the performance characteristics of AIR. While we expect AIR to function as a vital research tool for CBIR
applications in manufacturing, we are also very optimistic that AIR will serve the semiconductor community as a resource for
yield management. Without the addition of this valuable tool, the large image repositories maintained in yield management
systems will remain virtually untapped as a resource for rapidly resolving manufacturing problems.

6. ACKNOWLEDGEMENTS
The authors wish to acknowledge the Member Companies who participate in the Defect Reduction Technology Program at
SEMATECH for their continued support of our research into automated defect data reduction technologies and new strategies
for yield management. These members include AMD, Conexant, Hewlett-Packard, IBM, Intel, Lucent, Motorola, and Texas
Instruments.

7. REFERENCES

1. Semiconductor Industry Association International Technology Roadmap for Semiconductors, 1999.
2. V.N. Gudivada and V.V. Raghavan, “Content-Based Image Retrieval Systems”, IEEE Computer Magazine, 0018-9162,

September 1995, p. 18.
3. M. De Marsicoi, L. Cinque, and S. Levialdi, “Indexing Documents by their Content: A Survey of Current Techniques”,

Imaging and Vision Computing, Vol. 15, 1997, p. 119.
4. Y. Gong, C.H. Chuan, and G. Xiaoyi, “Image Indexing and Retrieval Based on Color Histograms”, Multimedia Tools

and Applications, Vol. 2, 1996, p. 133.
5. V.E. Ogle and M. Stonebraker, “Chabot: Retrieval from a Relational Database of Images”, IEEE Computer Magazine,

0018-9162, September 1995, p. 40.
6. B.S. Manjunath and W.Y. Ma, “Texture Features for Browsing and Retrieval of Image Data”, IEEE Transactions of

Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, August 1996.
7. J. You, H. Shen, and H.A. Cohen, “An Efficient Parallel Texture Classification for Image Retrieval”, Journal of Visual

Languages and Computing, Vol. 8, 1997, p. 359.
8. B.M. Mehtre, M.S. Kankanhalli, and W.F. Lee, “Shape Measures for Content Based Image Retrieval: A Comparison”,

Information Processing and Management, Vol. 33, No. 3, 1997, p. 319.
9. J.E. Gary and R. Mehrotra, “Similar Shape Retrieval Using a Structural Feature Index”, Information Systems, Vol. 18,

No. 7, 1997, p. 525.
10. R. Mehrotra and J.E. Gary, “Similar-Shape Retrieval in Shape Data Management”, IEEE Computer Magazine, 0018-

9162, September 1995, p. 57.
11. C. Hsu, W.W. Chu, and R. K. Taira, “A Knowledge-Based Approach for Retrieving Images by Content”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 8, No. 4, August 1996.
12. P.W. Huang and Y.R. Jean, “Design of Large Intelligent Image Database Systems”, International Journal of Intelligent

Systems, Vol. 11, 1996, p. 347.
13. B. Tao and B. Dickinson, “Image Retrieval and Pattern Recognition”, SPIE, Vol. 2916, 1996, p. 130.
14. K.W. Tobin, T.P. Karnowski, and R.K. Ferrell, “Image Retrieval in the Industrial Environment”, IS&T/SPIE’s 11th

International Symposium on Electronic Imaging: Science and Technology, San Jose Convention Center, January 1999.
15. K.W. Tobin, T.P. Karnowski, S.S. Gleason, D. Jensen, F. Lakhani, “Using Historical Wafermap Data for Automated

Yield Analysis”, 45th Annual International Symposium of the American Vacuum Society: Manufacturing Science and
Technology, Nov. 2-6, Baltimore, Maryland, 1998.

16. K.W. Tobin, T.P. Karnowski, S.S. Gleason, D. Jensen, F. Lakhani, “Integrated Yield Management”, 196th Meeting of the
Electrochemical Society, Inc., Oct. 17-22, Honolulu, Hawaii, 1999.

17. Jain, A.K., Fundamentals of Image Processing, Prentice-Hall, 1989.
18. Gonzalez, R.C., and Woods, R.E., Digital Image Processing, Addison-Wesley, 1993.

