Advanced Materials

 | 

Advanced Materials

SHARE

ORNL has the nation’s most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure, dynamics and functionality, and we use computation to understand and predict how they will behave in various applications.

From its beginnings in World War II’s Manhattan Project, ORNL has had a distinctive materials science program. Today, materials science research benefits from ORNL’s integration of basic and applied research programs and strong ties among computational science, chemical science, nuclear science and technology, neutron science, engineering, and national security. This broad approach to research is allowing ORNL to develop a variety of new materials for energy applications and transfer these new materials to industry. For example, an understanding of how defects form at the atomic level allows creation of improved materials that approach their theoretical strength, such as radiation-resistant steels for next-generation nuclear reactors and lightweight materials for energy-efficient transportation. In electrical energy storage, we are studying how chemical processes occur at the interface of electrodes and electrolytes and using supercomputers to predict how battery systems will perform. We develop “soft” materials, including polymers and carbon-based materials, used as membranes for batteries, fuel cells, and carbon capture, solar cells, and as precursors for the carbon fiber used in lighter cars and planes. We’ve also discovered ways to improve materials processing, using photon, microwave and magnetic field-assisted processing to increase the performance of new materials while reducing processing costs.   These advances have resulted in a broad portfolio of ORNL materials and technologies in the nuclear, automotive, and structural materials industry.

ORNL researchers are improving analytical tools used to characterize the structure and function of advanced materials, including electron microscopy, scanning probes, chemical imaging, and a variety of neutron scattering capabilities. Many of these capabilities are available through DOE user programs at ORNL, including the two neutron user facilities (the Spallation Neutron Source and the High Flux Isotope Reactor), the Center for Nanophase Materials Sciences, and our microscopy user facility (the Shared Research Equipment User Facility—which will be incorporated in the CNMS later this year). Complementing our experimental research is one of the nation’s largest collections of materials theorists who take full advantage of ORNL’s leadership computational facility to understand and design new materials, as well as processes that occur at materials interfaces. Together, these research capabilities in materials synthesis, characterization, and theory contribute to our leadership in basic and applied materials science that ultimately will lead to new technologies for meeting tomorrow’s energy needs. 

For more information, contact:

Latest News

1-3 of 6 Results
12  

ORNL researchers tune friction in ionic solids at the nanoscale
— OAK RIDGE, Tenn. Jan 27, 2015 – Friction impacts motion, hence the need to control friction forces.

American Physical Society honors three from ORNL
— OAK RIDGE, Tenn., Jan. 14, 2015 – Three researchers from the Department of Energy's Oak Ridge National Laboratory have been honored with fellowships from the American Physical Society. Bobby Sumpter, Randy Fishman and Thomas Papenbrock were each recognized for their exceptional contributions to the physical sciences.

ORNL microscopy pencils patterns in polymers at the nanoscale
— OAK RIDGE, Tenn., Dec. 17, 2014—Scientists at the Department of Energy’s Oak Ridge National Laboratory have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time.

 
12  

Recent Research Highlights

1-3 of 100 Results
12345  

Review Finds Ionization Can Heal or Harm Materials
— An invited review on latest advances in ion beam modification of materials provides conclusive evidence that energy loss by energetic ions to electrons (ionization) can lead to either self-healing of radiation damage created by atomic collisions or contribute to radiation damage.

Iodine-coordinated sulfide leads to an exceptionally stable ceramic electrolyte
— Coordination of iodine atoms within the Li3PS4 (LPS) electrolyte results in a new ceramic electrolyte with the formulation Li7P2S8I, a coordinated material between LPS and LiI. This new formulation takes advantage of the chemical stability of LiI to render an electrolyte with excellent compatability with Li anode.

Thin magnetic crystals are path to ferromagnetic graphene
— Chromium triiodide (CrI3) crystals were identified as a promising platform for studying how magnetism can enhance electronic behaviors in materials that are only a few atoms thick. Development of such ultra-thin magnetic materials may be crucial for continued advancement in miniaturization and performance enhancement of electronic devices.

 
12345  

ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.