Advanced Materials

 | 

Advanced Materials

SHARE

ORNL has the nation’s most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure, dynamics and functionality, and we use computation to understand and predict how they will behave in various applications.

From its beginnings in World War II’s Manhattan Project, ORNL has had a distinctive materials science program. Today, materials science research benefits from ORNL’s integration of basic and applied research programs and strong ties among computational science, chemical science, nuclear science and technology, neutron science, engineering, and national security. This broad approach to research is allowing ORNL to develop a variety of new materials for energy applications and transfer these new materials to industry. For example, an understanding of how defects form at the atomic level allows creation of improved materials that approach their theoretical strength, such as radiation-resistant steels for next-generation nuclear reactors and lightweight materials for energy-efficient transportation. In electrical energy storage, we are studying how chemical processes occur at the interface of electrodes and electrolytes and using supercomputers to predict how battery systems will perform. We develop “soft” materials, including polymers and carbon-based materials, used as membranes for batteries, fuel cells, and carbon capture, solar cells, and as precursors for the carbon fiber used in lighter cars and planes. We’ve also discovered ways to improve materials processing, using photon, microwave and magnetic field-assisted processing to increase the performance of new materials while reducing processing costs.   These advances have resulted in a broad portfolio of ORNL materials and technologies in the nuclear, automotive, and structural materials industry.

ORNL researchers are improving analytical tools used to characterize the structure and function of advanced materials, including electron microscopy, scanning probes, chemical imaging, and a variety of neutron scattering capabilities. Many of these capabilities are available through DOE user programs at ORNL, including the two neutron user facilities (the Spallation Neutron Source and the High Flux Isotope Reactor), the Center for Nanophase Materials Sciences, and our microscopy user facility (the Shared Research Equipment User Facility—which will be incorporated in the CNMS later this year). Complementing our experimental research is one of the nation’s largest collections of materials theorists who take full advantage of ORNL’s leadership computational facility to understand and design new materials, as well as processes that occur at materials interfaces. Together, these research capabilities in materials synthesis, characterization, and theory contribute to our leadership in basic and applied materials science that ultimately will lead to new technologies for meeting tomorrow’s energy needs. 

For more information, contact:

Latest News

1-3 of 6 Results
12  

ORNL devises recipe to fine-tune diameter of silica rods
— OAK RIDGE, Tenn., Dec. 16, 2013 – By controlling the temperature of silica rods as they grow, researchers at the Department of Energy’s Oak Ridge National Laboratory could be setting the stage for advances in anti-reflective solar cells, computer monitors, TV screens, eye glasses and more.

ORNL's Bruce Pint elected 2014 NACE fellow
— OAK RIDGE, Tenn., Dec. 13, 2013 – Bruce Pint, a research staff member at the Department of Energy's Oak Ridge National Laboratory, has been elected a 2014 National Association of Corrosion Engineers fellow.

Chaotic physics in ferroelectrics hints at brain-like computing
— OAK RIDGE, Tenn., Nov. 18, 2013—Unexpected behavior in ferroelectric materials explored by researchers at the Department of Energy’s Oak Ridge National Laboratory supports a new approach to information storage and processing.

 
12  

Recent Research Highlights

1-3 of 62 Results
12345  

Phonon localization drives nanoregions in a relaxor ferroelectric
— Neutron scattering measurements reveal that phonon localization drives the generation of polar nanoregions (PNRs) in a relaxor ferroelectric. PNRs facilitate the ability of relaxor ferroelectrics to convert between electrical and mechanical forms of energy, which is used in applications ranging from medical ultrasound to military sonar devices.

Decoding the Resistivity of Solid Electrolytes for Batteries
— The atomic-scale origin of grain-boundary (GB) resistance in solid electrolytes has been revealed by electron microscopy and spectroscopy. Inorganic solid electrolytes have the potential for enabling intrinsically safe, energy-dense batteries.

New Composite Electrolyte for Advanced Solid State Batteries Shows that Two is Better than One
— A new composite electrolyte for batteries with high conduction has been made by combining two solid electrolytes with complementary properties. The composite optimizes the favorable properties of the individual components while minimizing their limitations and opens the door for the development of new solid-state batteries for energy-dense storage of electricity.

 
12345  

ASK ORNL

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.