Skip to main content
Three staff members in Oak Ridge National Laboratory’s Fusion and Fission Energy and Science Directorate (FFESD) have moved into newly established roles facilitating communication and program management with sponsors of the directorate’s Nuclear Energy and Fuel Cycle Division.

Three staff members in ORNL’s Fusion and Fission Energy and Science Directorate have moved into newly established roles facilitating communication and program management with sponsors of the directorate’s Nuclear Energy and Fuel Cycle Division. 

Iridium-192 will be irradiated in the High Flux Isotope Reactor at ORNL before being sent to QSA Global for processing.

A key industrial isotope, iridium-192, has not been produced in the U.S. in almost 20 years. DOE's Isotope Program and QSA Global Inc. announced a joint product development agreement to initiate U.S. production of iridium-192. 

ORNL Distinguished Scientist Edgar Lara-Curzio (second from right) contributed to a working group discussion at COP28 about ways to stimulate demand for hydrogen-based fuels in maritime transportation.

ORNL was represented by four scientists at last year’s United Nations Framework Convention on Climate Change Conference of the Parties, known as COP28. This is the first time ORNL participated as an official Observer Organization.  

In a win for chemistry, inventors at ORNL have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer, or CFRP, and later recovering all of its starting materials.

In a win for chemistry, inventors at ORNL have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer, or CFRP, and later recovering all of its starting materials.

Jason DeGraw, a buildings researcher in thermal energy storage at ORNL, has been named a 2024 ASHRAE Fellow. Credit: ORNL, U.S. Dept. of Energy

The American Society of Heating, Refrigeration and Air-Conditioning Engineers, or ASHRAE, selected Jason DeGraw, a researcher with ORNL, as one of 23 members elevated to Fellow during its 2024 winter conference.

Spiral-tip motion combined with image reconstruction techniques is an approach that can help scientists better understand the behavior of an electric charge at the microscopic level, vital for improving batteries and electronic devices. Credit: Stephen Jesse/ORNL, U.S. Dept. of Energy

Research led by ORNL’s Marti Checa and Liam Collins has pioneered a groundbreaking approach described in the journal Nature Communications that enables visualizing charge motion at the nanometer level, or one billionth of a meter, but at speeds thousands of times faster than conventional methods. 

This CyberShake Study 22.12 seismic hazard model shows the Southern California regions (in reds and yellows) expected to experience strong ground motions at least once in the next 2,500 years. Image Credit: Statewide California Earthquake Center (SCEC).

Researchers at the Statewide California Earthquake Center are unraveling the mysteries of earthquakes by using physics-based computational models running on high-performance computing systems at ORNL. The team’s findings will provide a better understanding of seismic hazards in the Golden State. 

ORNL’s Sholl elected to National Academy of Engineering

David Sholl, director of the Transformational Decarbonization Initiative at ORNL, has been elected a member of the National Academy of Engineering for his contributions in addressing large-scale chemical separation challenges, including carbon dioxide capture, using quantitative materials modeling.

ORNL and UT researchers created a new method to calculate the power grid’s inertia in real time, using signals from pumped storage hydropower facilities such as TVA’s Raccoon Mountain project, pictured here. Credit: Tennessee Valley Authority

Scientists at ORNL and the University of Tennessee have developed an algorithm to predict electric grid stability using signals from pumped storage hydropower projects. The method provides critical situational awareness as the grid increasingly shifts to intermittent renewable power.

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.