Skip to main content
SHARE
Publication

Active Reaction Control of Cu Redox State Based on Real-Time Feedback from In Situ Synchrotron Measurements...

Publication Type
Journal
Journal Name
Journal of the American Chemical Society
Publication Date
Page Numbers
18758 to 18762
Volume
142
Issue
44

We achieve a target material state by using a recursive algorithm to control the material reaction based on real-time feedback on the system chemistry from in situ X-ray absorption spectroscopy. Without human intervention, the algorithm controlled O2:H2 gas partial pressures to approach a target average Cu oxidation state of 1+ for γ-Al2O3-supported Cu. This approach represents a new paradigm in autonomation for materials discovery and synthesis optimization; instead of iterating the parameters following the conclusion of each of a series of reactions, the iteration cycle has been scaled down to time points during an individual reaction. Application of the proof-of-concept illustrated here, using a feedback loop to couple in situ material characterization and the reaction conditions via a decision-making algorithm, can be readily envisaged in optimizing and understanding a broad range of systems including catalysis.