Skip to main content
SHARE
Publication

On Analytics of File Transfer Rates over Dedicated Wide-Area Connections...

Publication Type
Conference Paper
Book Title
2017 IEEE 13th International Conference on e-Science (e-Science)
Publication Date
Page Numbers
576 to 585
Conference Name
First International Workshop on Workflow Science (WoWS)
Conference Location
AUCKLAND, New Zealand
Conference Sponsor
IEEE
Conference Date
-

File transfers between the decentralized storage sites over dedicated wide-area connections are becoming increasingly important in high-performance computing and big data scenarios. Designing such scientific workflows for large file transfers is extremely challenging as they depend on the file, I/O, host, and local- and wide-area network subsystems, and their interactions. To gain insights into file-transfer rate profiles, we develop polynomial, bagging, and boosting regression models for Lustre and XFS file transfer measurements, which are collected using XDD over a suite of 10 Gbps connections with 0-366 ms round trip times (RTTs). In addition to overall trends and analytics, these regressions also provide file-transfer rate estimates for RTTs and number of parallel flows at which measurements might not have been collected. They show that bagging and boosting techniques provide closer data fits than the polynomial regression. We develop probabilistic bounds on the generalization error of these methods, which combined with the cross-validation error establish that former two are more accurate estimators than the polynomial regression. In addition, we present a method to efficiently determine the number of parallel flows to achieve a peak file-transfer rate using fewer than full sweep measurements; in our measurements, the peak is achieved in 96% of cases with 15-25% of measurements of a full sweep.