Skip to main content
SHARE
Publication

Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from...

by Ying Sun, Lianhong Gu
Publication Type
Journal
Journal Name
Plant, Cell & Environment
Publication Date
Page Numbers
1 to 994
Volume
37
Issue
4

Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analyzed in conjunction with model simulations to determine the effects of mesophyll conductance (gm) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite gm results in up to 75% underestimation for maximum carboxylation rate Vcmax, 60% for maximum electron transport rate Jmax, and 40% for triose phosphate utilization rate Tu. Vcmax is most sensitive, Jmax is less sensitive, and Tu has the least sensitivity to the variation of gm. Due to this asymmetrical effect of gm, the ratios of Jmax to Vcmax, Tu to Vcmax, and Tu to Jmax are all overestimated. An infinite gm assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying gm for understanding in-situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A nonlinear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.