Skip to main content
SHARE
Publication

An Attractive Way to Correct for Missing Singles Excitations in Unitary Coupled Cluster Doubles Theory

by Zachary W Windom, Daniel Chaves Claudino, Rodney Bartlett
Publication Type
Journal
Journal Name
The Journal of Physical Chemistry A
Publication Date
Page Numbers
7036 to 7045
Volume
128
Issue
33

Coupled cluster methods based exclusively on double excitations are comparatively “cheap” and interesting model chemistries, as they are typically able to capture the bulk of the dynamic electron correlation effects. The trade-off in such approximations is that the effect of neglected excitations, particularly single excitations, can be considerable. Using standard and electron-pair-restricted T2 operators to define two flavors of unitary coupled cluster doubles (UCCD) methods, we investigate the extent to which missing single excitations can be recovered from low-order corrections in many-body perturbation theory (MBPT) within the unitary coupled cluster (UCC) formalism. Our analysis includes the derivations of finite-order UCC energy functionals, which are used as a basis to define perturbative estimates of missed single excitations. This leads to the novel UCCD[4S] and UCCD[6S] methods, which consider energy corrections for missing single excitations through fourth- and sixth-order in MBPT, respectively. We also apply the same methodology to the electron-pair-restricted ansatz, but the improvements are only marginal. Our findings show that augmenting UCCD with these post hoc perturbative corrections can lead to UCCSD-quality results.