Skip to main content
SHARE
Publication

Beyond Darcy’s Law: The Role of Phase Topology and Ganglion Dynamics for Two-Fluid Flow...

by Ryan Armstrong, James Mcclure, Mark A Berrill, Maja Rucker, Steffen Berg
Publication Type
Journal
Journal Name
Physical Review E
Publication Date
Page Number
043113
Volume
94

Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immiscible phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.