Skip to main content
SHARE
Publication

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range ...

Publication Type
Journal
Journal Name
SAE Technical Paper Series
Publication Date
Page Number
1185
Volume
2019
Issue
01

In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels. In contrast, soot emissions were significantly reduced with the gasoline-range fuels, including a ~70% reduction in micro soot sensor measurements and a >50% reduction in smoke meter measurements. All gasoline-range fuel PM samples were also found to contain higher amount of volatile species and organic carbon fractions compared to ULSD PM samples as measured by thermogravimetric and EC-OC analyses. Various partially oxidized HC species and nitrophenolic compounds were also detected by TDP-GC-MS and CE-MS techniques, which indicated that more pronounced PPCI combustion occurred with the gasoline-range fuels. Overall similar PM oxidation behavior was observed despite the differences in reactivity and chemical properties of the fuels, although there may be some significant impacts under certain operating conditions.