Skip to main content
SHARE
Publication

Controlling Condensation and Frost Growth with Chemical Micropatterns...

Publication Type
Journal
Journal Name
Scientific Reports
Publication Date
Page Number
19131
Volume
6

Frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of frost across the population of supercooled condensate. Here, we demonstrate that when the nucleation sites for supercooled condensate are properly controlled with chemical micropatterns, the speed of frost growth can be slowed and even halted entirely. This stoppage of frost growth is attributed to the large interdroplet separation between condensate upon the onset of freezing, which was controlled by the pitch of the chemical patterns and by deliberately triggering an early freezing event. These findings reveal that frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and/or temporally control the onset of freezing events.