Skip to main content
SHARE
Publication

Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice...

Publication Type
Journal
Journal Name
Nature Physics
Publication Date
Page Numbers
715 to 719
Volume
17
Issue
6

The strong electron interactions in the minibands formed in moiré superlattices of van der Waals materials, such as twisted graphene and transition metal dichalcogenides, make such systems a fascinating platform with which to study strongly correlated states1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19. In most systems, the correlated states appear when the moiré lattice is filled by an integer number of electrons per moiré unit cell. Recently, correlated states at fractional fillings of 1/3 and 2/3 holes per moiré unit cell have been reported in the WS2/WSe2 hetero-bilayer, hinting at the long-range nature of the electron interaction16. Here we observe a series of correlated insulating states at fractional fillings of the moiré minibands on both electron- and hole-doped sides in angle-aligned WS2/WSe2 hetero-bilayers, with certain states persisting at temperatures up to 120 K. Simulations reveal that these insulating states correspond to ordering of electrons in the moiré lattice with a periodicity much larger than the moiré unit cell, indicating a surprisingly strong and long-range interaction beyond the nearest neighbours.