Skip to main content
SHARE
Publication

Coupling hydropyrolysis and vapor-phase catalytic hydrotreatment to produce biomethane from pine sawdust...

by Xianzhi Meng, Arthur J Ragauskas
Publication Type
Journal
Journal Name
Bioresource Technology
Publication Date
Page Number
129472
Volume
386
Issue
1

This study investigated hydropyrolysis and subsequent vapor-phase hydrotreatment over a NiAl2O4 catalyst to produce biomethane (CH4) from pine sawdust. The non-catalytic pressurized hydropyrolysis generated tar, CO2, and CO as the primary products. However, using a NiAl2O4 catalyst in the second-stage reactor significantly increased the formation of CH4 and reduced CO and CO2 in gas products. The catalyst also fully converted tar intermediates to produce CH4, resulting in a maximum carbon yield of 77.7% with 97.8% selectivity. The temperature plays a crucial role in CH4 generation, with both its yield and selectivity showing a positive correlation with the reaction temperature. Increasing the reaction pressure from 0.2 to 1.2 MPa notably inhibited the production of CH4, leading to a shift towards cycloalkanes due to a competitive reaction. This tandem approach shows great potential as an innovative technique for producing alternative fuels from biomass wastes.