Skip to main content
SHARE
Publication

Determining System Parameters for Optimal Performance of Hybrid DS/FFH Spread-Spectrum...

by Xiao Ma, Mohammed M Olama, Phani Teja V Kuruganti, Stephen F Smith, Seddik M Djouadi
Publication Type
Conference Paper
Publication Date
Conference Name
Military Communication Conference (MILCOM 2012)
Conference Location
Orlando, Florida, United States of America
Conference Date
-

In recent years there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their use in military communications because they accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence (DS) modulation with "fast" frequency hopping (FFH), denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, an optimization problem is formulated that maximizes the DS/FFH communication system performance in terms of probability of bit error and solves for the system design parameters. The objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. System design parameters of interest are the length of the DS code sequence, number of frequency hopping channels, number of channels corrupted by wide-band jamming, and number of hops per bit. The proposed formulation takes into account the effects from wide-band and partial-band jamming, multi-user interference and/or varying degrees of Rayleigh and Rician multipath fading. Numerical results are presented to demonstrate the method’s viability.