Skip to main content
SHARE
Publication

Dynamic behavior of interfacila water at the silica surface...

by Dimitrios Argyris, David R Cole, Alberto Striolo
Publication Type
Journal
Journal Name
The Journal of Physical Chemistry C
Publication Date
Page Numbers
19591 to 19600
Volume
113
Issue
45

Molecular dynamics simulations were employed to study the dynamics properties of water at the silica-liquid interface at ambient temperature. Three different degrees of hydroxylation of a crystalline silica surface were used. To assess the water dynamic properties we calculated the residence probability and in-plane mean square displacement as a function of distance from the surface. The data indicate that water molecules at the fully hydroxylated surface remain longer, on average, in the interfacial region than in the other cases. By assessing the dynamics of molecular dipole moment and hydrogen-hydrogen vector an anisotropic reorientation was discovered for interfacial water in contact with any of the surfaces considered. However, the features of the anisotropic reorientation observed for water molecules depend strongly on the relative orientation of interfacial water molecules and their interactions with surface hydroxyl groups. On the partially hydroxylated surface, where water molecules with hydrogen-down and hydrogen-up orientation are both found, those water molecules associated with surface hydroxyl groups remain at the adsorbed locations longer and reorient slower than the other water molecules. A number of equilibrium properties, including density profiles, hydrogen bond networks, charge densities, and dipole moment densities are also reported to explain the dynamics results.