Skip to main content
SHARE
Publication

Economic Benefits of Advanced Materials in Nuclear Power Systems...

by Jeremy T Busby
Publication Type
Journal
Journal Name
Journal of Nuclear Materials
Publication Date
Page Numbers
301 to 306
Volume
392
Issue
2

One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR���s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today���s fast reactor designs).

Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.