Skip to main content
SHARE
Publication

Elastic moduli reduction in SiC-SiC tubular specimen after high heat flux neutron irradiation measured by resonant ultrasound...

Publication Type
Journal
Journal Name
Journal of Nuclear Materials
Publication Date
Page Numbers
391 to 401
Volume
523

The initial results of a post-irradiation examination study conducted on a SiC-SiC tubular specimen irradiated under a high radial heat flux are presented herein. The elastic properties of the specimen were evaluated before and after the irradiation using the resonant ultrasound spectroscopy (RUS) technique. The composite tubular specimen was considered as an orthotropic elastic with nine elastic constants (Young's moduli, shear moduli and Poisson's ratios—three components of each) for representing its full elastic deformation behavior. All the elastic moduli decreased after irradiation; the reduction was as high as 35% in one of the moduli. The significant decrease in the moduli indicates the presence of microcracks. The results from a computational study show significant stress development in the specimen due to irradiation, primarily caused by differential swelling across the thickness of the specimen. The evaluated stresses exceed the proportional limit stress of the material, indicating the likelihood of matrix microcracking, and thus corroborating the results obtained from RUS. X-ray Computed Tomography (XCT) study confirmed the presence of cracks in the irradiated specimen. These cracks occurred at the inner region of the specimen and propagated in axial and hoop directions. These XCT results are in agreement with the RUS results and stress distribution results from the computational study.