Skip to main content
SHARE
Publication

Enhancing interfacial magnetization with a ferroelectric...

Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Page Number
174432
Volume
94
Issue
17
Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface's magnetic properties can be probed at an atomic level. Here, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0μB/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. These compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena.