Skip to main content
SHARE
Publication

Excitonic wave-packet evolution in a two-orbital Hubbard model chain: A real-time real-space study...

by Bradraj Pandey, Gonzalo Alvarez, Elbio R Dagotto
Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Volume
104
Issue
22

Motivated by experimental developments introducing the concept of spin-orbit separation, we study the real-space real-time evolution of an excitonic wave packet using a two-orbital Hubbard model in a chain. The exciton is created by exciting an electron from a lower-energy half-filled orbital to a higher-energy empty orbital. We carry out the real-time dynamics of the resulting excitonic wave packet using the time-dependent density matrix renormalization group. We find clear evidence of charge-spin and spin-orbit separation in real space, by tracking the time evolution of local observables. We show that the velocity of the orbiton can be tuned varying the interorbital interactions. We also present a comparative study of the dynamics of a hole in one-orbital and two-orbital Hubbard models. Moreover, we analyze the dynamics of an exciton with spin-flip excitation, where we observe fractionalized spinons induced by Hund's interaction.