Skip to main content
SHARE
Publication

Fully Recyclable Polycarbonates from Simple, Bio-Derived Building Blocks...

Publication Type
Journal
Journal Name
ACS Applied Polymer Materials
Publication Date
Page Numbers
730 to 736
Volume
3
Issue
2

Plastic buildup and accumulation in the environment are an increasingly large problem facing civilization. Petroleum-based plastics can exist for hundreds to thousands of years in the environment, destroying habitats and polluting water. Environmentally conscious replacements for plastics are urgently needed. In this publication, we present a biobased alternative to petroleum-based polycarbonates. Using a diol monomer derived from glycerol and glycerol products, we have synthesized aliphatic polycarbonates with comparable physical properties to petroleum-based incumbents. The polymer can be quantitatively depolymerized using warm methanol to recover the monomer which can be repolymerized multiple times, or alternatively, the monomer, which is inherently nontoxic, can slowly break apart to the original components. This provides two end-of-life options for this material recycle or decomposition under environmental conditions to benign building blocks, thus providing a potential pathway to avoid environmental and bioaccumulation of plastics. We also demonstrate the ability to selectively recover the monomer from a simulated mixed-plastic waste environment; the monomer recovered this way functions identically to the virgin monomer after purification. This work represents an important step in the progress toward environmentally conscious polymer design with multiple end-of-life options.