Skip to main content
SHARE
Publication

Helimagnetism in MnBi2Se4 Driven by Spin-Frustrating Interactions Between Antiferromagnetic Chains...

by Judith Clark, Chongin Pak, Huibo Cao, Michael Shatruk
Publication Type
Journal
Journal Name
Crystals
Publication Date
Page Number
242
Volume
11
Issue
3

We report the magnetic properties and magnetic structure determination for a linear-chain antiferromagnet, MnBi2Se4. The crystal structure of this material contains chains of edge-sharing MnSe6 octahedra separated by Bi atoms. The magnetic behavior is dominated by intrachain antiferromagnetic (AFM) interactions, as demonstrated by the negative Weiss constant of −74 K obtained by the Curie–Weiss fit of the paramagnetic susceptibility measured along the easy-axis magnetization direction. The relative shift of adjacent chains by one-half of the chain period causes spin frustration due to interchain AFM coupling, which leads to AFM ordering at TN = 15 K. Neutron diffraction studies reveal that the AFM ordered state exhibits an incommensurate helimagnetic structure with the propagation vector k = (0, 0.356, 0). The Mn moments are arranged perpendicular to the chain propagation direction (the crystallographic b axis), and the turn angle around the helix is 128°. The magnetic properties of MnBi2Se4 are discussed in comparison to other linear-chain antiferromagnets based on ternary mixed-metal halides and chalcogenides.