Skip to main content
SHARE
Publication

The hybrid lattice of KxFe2-ySe2: why superconductivity and magnetism can coexist...

by Despina Louca, Keeseong Park, Bing Li, Joerg C Neuefeind, Jiaqiang Yan
Publication Type
Journal
Journal Name
Scientific Reports
Publication Date
Page Number
2047
Volume
3

It is always puzzling to observe superconductivity in atomically disordered systems as it contradicts the very nature of electronic state coherence, but nevertheless happens as in amorphous alloys1. How can superconductivity survive under conditions for strong electron localization2? To understand the effects of disorder, a family of recently discovered Fe-based superconductors3-6 is investigated, the KxFe2-ySe2 (7) where nominally, superconductivity is observed between a semi-metallic region below 0.7 < x < 0.85 insulating and antiferromagnetic region above8,9. By probing the local structure we observe that superconductivity emerges in a locally distorted Fe sublattice that accommodates two kinds of bond environments, forming a double-well distribution. Consisting of short bonds which are metallic in nature and of long ones which are insulating and antiferromagnetic, their distribution changes with x. Even though crystallographically the atomic structure changes slowly on average by adding K10, a continuous transition from the metallic (short) to the insulating (long) Fe bonds is observed across this region. What is unique to this system’s superconducting state is the presence of the double-well distribution in equal proportions, in contrast to other Fe-based materials where only one kind of Fe bond is present. This suggests that in this superconducting system, superconductivity is intertwined with magnetism, appearing at the crossover from metallic to insulating conditions and is not due to phase separation. Such a hybrid state is most likely present in cuprate superconductors as well and may be more common than previously expected.