Skip to main content
SHARE
Publication

Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods...

by Cailin Wang, Richard A Riedel
Publication Type
Journal
Journal Name
Review of Scientific Instruments
Publication Date
Page Number
013301
Volume
87
Issue
1

A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104-105. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a1, b0) obtained from Wiener filter; iv). an effective amplitude (m) obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.