Skip to main content
SHARE
Publication

Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by In Situ Liquid Cell Scanning Transmissio...

by Silvia Canepa, Brian T Sneed, Hongyu Sun, Raymond R Unocic, Kristian Mølhave
Publication Type
Journal
Journal Name
The Journal of Physical Chemistry C
Publication Date
Page Numbers
2350 to 2357
Volume
122
Issue
4

The synthesis of monodisperse size- and shape-controlled Au nanocrystals is often achieved with cetyltrimethylammonium bromide (CTAB) surfactant; however, its role in the growth of such tailored nanostructures is not well understood. To elucidate the formation mechanism(s) and evolution of the morphology of Au nanocrystals in the early growth stage, we present an in situ liquid-cell scanning transmission electron microscopy (STEM) investigation using electron beam-induced radiolytic species as the reductant. The resulting particle shape at a low beam dose rate is shown to be strongly influenced by the surfactant; the Au nanocrystal growth rate is suppressed by increasing the CTAB concentration. At a low CTAB concentration, the nanoparticles (NPs) follow a reaction-limited growth mechanism, while at high a CTAB concentration the NPs follow a diffusion-limited mechanism, as described by the Lifshitz–Slyozov–Wagner (LSW) model. Moreover, we investigate the temporal evolution of specific NP geometries. The amount of Au reduced by the electron beam outside the irradiated area is quantified to better interpret the nanocrystal growth kinetics, as well as to further develop an understanding of electron beam interactions with nanomaterials toward improving the interpretation of in situ measurements.