Skip to main content
SHARE
Publication

The Influence of Local Distortions on Proton Mobility in Acceptor Doped Perovskites...

Publication Type
Journal
Journal Name
Chemistry of Materials
Publication Date
Page Numbers
4919 to 4925
Volume
30
Issue
15

Optimizing proton conduction in solids remains the most promising solution for achieving intermediate temperature (∼750–1000 K) solid oxide fuel cell devices, and enabling selective membranes for H2 separation. Proton conduction, a thermally activated process, exhibits its highest rates in yttrium (Y) acceptor doped BaZrO3 at an optimal doping level of 20% Y. The presence of extended defects such as grain boundaries has typically generated a wide variability in reported conductivity values. This has hindered a fundamental mechanistic understanding of how (acceptor) doping levels correlate with the activation energy of protons to produce an optimal doping level for fast proton transport. While isolated dopants have been suggested as the primary source of proton trapping, our results indicate that it is the local dopant-density that matters. Here, we show that increasing the local dopant density promotes localized lattice distortions in the presence of point defects such as oxygen-vacancies or proton interstitials. An increasing distortion amplitude traps the point defects more strongly in the form of polarons, forming defect-clusters at higher concentrations. This leads to a monotonic increase in the activation energy (and hence a decrease in proton mobility) as observed in our measurements. The optimum doping level can now be explained as a competition between increasing proton concentration with doping levels and increasing activation energy due to defect-clusters formed by defect-polarons. Based on our findings, we demonstrate how to improve proton conductivity in doped BaZrO3, by inhibiting this dopant-lattice polaronic interaction. This approach should be generally applicable for ionic conduction in perovskite oxides such as oxygen-ion conduction in solid-oxide fuel cells and alkali-ion conduction in solid-state batteries where carriers might get trapped as defect-polarons.